Aβ amyloidogenesis is reported to occur via a nucleated polymerization mechanism, if so the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early non-fibrillar Aβ oligomers without observing amyloid fibrils, suggesting a mechanistic revision may be needed. Herein, we introduce Cys-Cys-Aβ1-40 that cannot bind to the latent fluorophore FlAsH as a monomer, but is capable of binding FlAsH as an non-fibrillar oligomer or as a fibril, rendering the conjugates fluorescent. FlAsH monitoring of Cys-Cys-Aβ1-40 aggregation provides compelling evidence that Aβ1-40 very rapidly and efficiently forms spherical oligomers in vitro (85% yield) that are kinetically competent to slowly convert to amyloid fibrils by a nucleated conformational conversion mechanism (seedable). Moreover, this methodology demonstrated that plasmalogen ethanolamine vesicles eliminate the proteotoxicity-associated oligomerization phase of Aβ amyloidogenesis, while allowing fibril formation, rationalizing how low plasmalogen ethanolamine levels in the brain are epidemiologically linked to Alzheimer’s disease.
N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naïve sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications, but currently results in unpredictable changes to protein stability. We show that placing a Phe residue two or three positions prior to a glycosylated Asn in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine (GlcNAc) of the glycan. Glycosylating this portable structural module, an “enhanced aromatic sequon”, in three different proteins stabilizes their native states by −0.7 to −2.0 kilocalories per mole and increases cellular glycosylation efficiency.
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the -sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycan's first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc 2, improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.glycoprotein stability ͉ N-glycan function ͉ N-glycosylation ͉ protein folding ͉ kinetics
N-glycosylation can increase the rate of protein folding, enhance thermodynamic stability, and slow protein unfolding; however, the molecular basis for these effects is incompletely understood. Without clear engineering guidelines, attempts to use N-glycosylation as an approach for stabilizing proteins have resulted in unpredictable energetic consequences. Here we review the recent development of three “enhanced aromatic sequons”, which appear to facilitate stabilizing native-state interactions between Phe, Asn-GlcNAc and Thr when placed in an appropriate reverse turn context. It has proven to be straightforward to engineer a stabilizing enhanced aromatic sequon into glycosylation-naïve proteins that have not evolved to optimize specific protein-carbohydrate interactions. Incorporating these enhanced aromatic sequons into appropriate reverse turn types within proteins should enhance the well-known pharmacokinetic benefits of N-glycosylation-based stabilization by lowering the population of unfolded protease-susceptible and misfolded aggregation-prone states, thereby making such proteins more useful in research and pharmaceutical applications.
Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing's sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed “undruggable” by conventional methods. Here, we used small-molecule microarray (SMM) screens to identify and characterize drug-like compounds that modulate the biological function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacological ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.