Hydroxyl radicals (•OH) play a crucial role in the fate of redox-active substances in the environment. Studies of the •OH production in nature has been constrained to surface environments exposed to light irradiation, but is overlooked in the subsurface under dark. Results of this study demonstrate that abundant •OH is produced when subsurface sediments are oxygenated under fluctuating redox conditions at neutral pH values. The cumulative concentrations of •OH produced within 24 h upon oxygenation of 33 sediments sampled from different redox conditions are 2-670 μmol •OH per kg dry sediment or 6.7-2521 μM •OH in sediment pore water. Fe(II)-containing minerals, particularly phyllosilicates, are the predominant contributor to •OH production. This production could be sustainable when sediment Fe(II) is regenerated by the biological reduction of Fe(III) during redox cycles. Production of •OH is further evident in a field injection-extraction test through injecting oxygenated water into a 23-m depth aquifer. The •OH produced can oxidize pollutants such as arsenic and tetracycline and contribute to CO2 emissions at levels that are comparable with soil respiration. These findings indicate that oxygenation of subsurface sediments is an important source of •OH in nature that has not been previously identified, and •OH-mediated oxidation represents an overlooked process for substance transformations at the oxic/anoxic interface.
Mackinawite (FeS) nanoparticles have been extensively tested for reducing contaminants under anoxic conditions, while the oxidizing impact induced by FeS under oxic conditions has been largely underestimated. In light of previous findings that hydroxyl radicals (·OH) can be produced from oxygenation of sediment Fe(II), herein we revealed that ·OH can be produced efficiently from FeS oxygenation at circumneutral conditions, yielding 84.7 μmol ·OH per g FeS. Much more ·OH was produced from the oxygenation of FeS compared with siderite, pyrite, and zerovalent iron nanoparticles under the same conditions. The oxidation of FeS was a surface-mediated process, in which O was transformed by the structural Fe(II) on FeS surface to ·OH with the generation of HO intermediate. A small proportion of Fe(II) was regenerated from the reduction of Fe(III) by FeS and S(-II), but this proportion did not significantly contribute to ·OH production. We further validated that the ·OH produced from FeS oxygenation considerably contributed to the oxidation of arsenic. As the change of redox conditions from anoxic to oxic is common in both natural and artificial processes, our findings suggest that the oxidizing impact induced by FeS at oxic conditions should be concerned due to ·OH production.
Reductive transformation of organic contaminants by FeS in anoxic environments has been documented previously, whereas the transformation in oxic environments remains poorly understood. Here we show that phenol can be efficiently oxidized in oxic FeS suspension at circumneutral pH value. We found that hydroxyl radicals (•OH) were the predominant reactive oxidant and that a higher O 2 content accelerated phenol degradation. Phenol oxidation depended on •OH production and utilization efficiency, i.e., phenol degraded per •OH produced. Low FeS contents (≤1 g/L) produced less •OH but higher utilization efficiency, while high contents produced more •OH but lower utilization efficiency. Consequently, the most favorable conditions for phenol oxidation occurred during the long-term interaction between dissolved O 2 and low levels of FeS (i.e., ≤1 g/L). Mossbauer spectroscopy suggests that FeS oxidation to lepidocrocite initially produced an intermediate Fe(II) phase that could be explained by the apparent preferential oxidation of structural S(−II) relative to Fe(II), rendering a higher initial •OH yield upon unit of Fe(II) oxidation. Trichloroethylene can be also oxidized under similar conditions. Our results demonstrate that oxidative degradation of organic contaminants during the oxygenation of FeS can be a significant but currently underestimated pathway in both natural and engineered systems.
The
pursuit of sustainable functional materials requires development
of materials based on renewable resources and efficient fabrication
methods. Hereby, we fabricated all-polysaccharides multilayer films
using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e.,
TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer
casting method. This technique is based on alternate depositions of
oppositely charged water-based CGG and TOCNs onto laminated films.
The resultant polyelectrolyte multilayer films were transparent, ductile,
and strong. More importantly, the self-standing films exhibited excellent
gas (water vapor and oxygen) and oil barrier performances. Another
outstanding feature of these resultant films was their resistance
to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran
(THF). The proposed film fabrication process is environmentally benign,
cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer
films can be used as a renewable material for industrial applications
such as packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.