Retinoic acid (RA), a biologically active derivative of vitamin A, has protective effects against damage caused by H 2 O 2 or oxygen-glucose deprivation in mesangial and PC12 cells. In cultured human osteosarcoma cells, RA enhances the expression of bone morphogenetic protein -7 (BMP7), a trophic factor that reduces ischemia-or neurotoxin -mediated neurodegeneration in vivo. The purpose of this study is to examine whether RA reduces ischemic brain injury through a BMP7 mechanism. We found that intracerebroventricular administration of 9-cis-retinoic acid (9cRA) enhanced BMP7 mRNA expression, detected by RTPCR, in rat cerebral cortex at 24 hours after injection. Rats were also subjected to transient focal ischemia induced by ligation of the middle cerebral artery (MCA) at one day after 9cRA injection. Pretreatment with 9cRA increased locomotor activity and attenuated neurological deficits 2 days after MCA ligation. 9cRA also reduced cerebral infarction and TUNEL labeling. These protective responses were antagonized by BMP antagonist noggin given at one day after 9cRA injection. Taken together, our data suggest that 9cRA has protective effects against ischemia -induced injury and these effects involve BMPs.
Background and Purpose-Previous studies have indicated that both methamphetamine (MA) and ischemia/reperfusion injuries involve reactive oxygen species formation and activation of apoptotic mechanism. That MA could have a synergistic or additive effect with stroke-induced brain damage is possible. The purpose of the present study was to investigate whether administration of MA in vivo would potentiate ischemic brain injury. Methods-Adult CD-1 mice were pretreated with MA or saline. Each animal later was anesthetized with chloral hydrate and placed in a stereotaxic frame. A subset of animals received intracerebral administration of glial cell line-derived neurotrophic factor (GDNF). The right middle cerebral artery and bilateral carotids were transiently occluded for 45 minutes. Regional cerebral blood flow was measured by laser Doppler. Animals were sacrificed for triphenyltetrazolium chloride staining and p53 mRNA Northern blot assay after 24 hours of reperfusion. Cortical and striatal GDNF levels were assayed by ELISA. Results-We found that pretreatment with MA increased ischemia-induced cerebral infarction. Ischemia or MA alone enhanced p53 mRNA expression. Moreover, MA potentiated expression of p53 mRNA in the ischemic mouse brain. MA pretreatment decreased GDNF levels in ischemic striatum. Intracerebral administration of GDNF before ischemia reduced MA-facilitated infarction. Conclusions-Our data indicate that MA exacerbates ischemic insults in brain, perhaps through the inhibition of GDNF-mediated pathways and suggest that MA may antagonize endogenous neuroprotective pathways as part of its mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.