Encapsulation of small-molecule drugs in hydrophobic polymers or amphiphilic copolymers has been extensively used for preparing polymeric nanoparticles (NPs). The loadings and loading efficiencies of a wide range of drugs in polymeric NPs, however, tend to be very low. In this Communication, we report a strategy to prepare polymeric NPs with exceptionally high drug loading (>50%) and quantitative loading efficiency. Specifically, a dimeric drug conjugate bearing a trigger-responsive domain was designed and used as the core-constructing unit of the NPs. Upon co-precipitation of the dimeric drug and methoxypoly(ethylene glycol)-block-polylactide (mPEG-PLA), NPs with a dimeric drug core and a polymer shell were formed. The high-drug-loading NPs showed excellent stability in physiological conditions. No premature drug or prodrug release was observed in PBS solution without triggering, while external triggering led to controlled release of drug in its authentic form.
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (
e
.
g
., intranasal treatment) for BBB bypassing are not included in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.