Indian Ocean Dipole (IOD) is a large-scale physical ocean phenomenon in the Indian Ocean that plays an important role in predicting the El Nino Southern Oscillation in the tropical Pacific. Predicting the occurrence of IOD is of great significance to the study of climate change and other marine phenomena. Generally, the IOD index is calculated to judge whether the IOD occurs. In this paper, a convolutional LSTM (convLSTM) neural network is used to build the deep learning model to predict the sea surface temperature in the next seven months and calculate the IOD index. Through the analysis of marine atmospheric data with complex temporal and spatial relationships, the wind field signal knowledge of the physical ocean is introduced to predict IOD phenomenon by combining the prior knowledge of the physical ocean and deep learning. The experimental results show that the average correlation of IOD index time series to the true IOD index time series is 82.87% from 2015 to 2018, seven months ahead for IOD prediction. IOD manifests as sea surface temperature (SST) anomaly changes, and this thesis verifies that the wind field signal information has a positive impact on the prediction of IOD changes. Moreover, the convLSTM can predict this anomaly better. The IOD index line graph can generally fit the real IOD index variation trend, which has a profound impact on the study of the IOD phenomenon.
Impacted by global warming, the global sea surface temperature (SST) has increased, exerting profound effects on local climate and marine ecosystems. So far, investigators have focused on the short-term forecast of a small or medium-sized area of the ocean. It is still an important challenge to obtain accurate large-scale and long-term SST predictions. In this study, we used the reanalysis data sets provided by the National Centers for Environmental Prediction based on the Internet of Things technology and Temporal Convolutional Network (TCN) to predict the monthly SSTs of the Indian Ocean from 2014 to 2018. The results yielded two points: Firstly, the TCN model can accurately predict long-term SSTs. In this paper, we used the Pearson correlation coefficient (hereafter this will be abbreviated as “correlation”) to measure TCN model performance. The correlation coefficient between the predicted and true values was 88.23%. Secondly, compared with the CFSv2 model of the American National Oceanic and Atmospheric Administration (NOAA), the TCN model had a longer prediction time and produced better results. In short, TCN can accurately predict the long-term SST and provide a basis for studying large oceanic physical phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.