A fourth-order Runge-Kutta in the interaction picture (RK4IP) method is presented for solving the coupled nonlinear Schr odinger equation (CNLSE) that governs the light propagation in optical fibers with randomly varying birefringence. The computational error of RK4IP is caused by the fourth-order Runge-Kutta algorithm, better than the split-step approximation limited by the step size. As a result, the step size of RK4IP can have the same order of magnitude as the dispersion length and/or the nonlinear length of the fiber, provided the birefringence effect is small. For communication fibers with random birefringence, the step size of RK4IP can be orders of magnitude larger than the correlation length and the beating length of the fibers, depending on the interaction between linear and nonlinear effects. Our approach can be applied to the fibers having the general form of local birefringence and treat the Kerr nonlinearity without approximation. Our RK4IP results agree well with those obtained from Manakov-PMD approximation, provided the polarization state can be mixed enough on the Poincar e sphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.