Cyto-analysis of rare cells often requires separation and detection with each procedure posing substantial challenges. This paper presents a disk-based microfluidic platform for both procedures via an immunomagnetic negative selection process. The microfluidic platform's unique features include a multistage magnetic gradient to trap labeled cells in double trapping areas, drainage of fluid to substantially shorten detection time, and a bin-like regions to capture target cells to facilitate a seamless enumeration process. Proof-of-concept was conducted using MCF7 as target rare cells (stained with anti-cytokeratin-FITC antibodies) spiked into Jurkat Clone E6-1 non-target cells (labeled with anti-CD45-PE and anti-PE BD magnetic beads). Then, mononuclear cells (MNC) from healthy blood donors were mixed with MCF7s, modeling rare cells, and tested in the disk. Results show a non-linear magnetic coupling effect of the multistage magnet substantially increased the trapping efficacy over that of a single magnet, contributing to the depletion rate of Jurkats, which reaches 99.96%. Detection time is extensively shortened by depletion of 95% of non-cell-containing fluid in the collection area. The average yield of detected MCF7 cells is near-constant 60 ± 10% over a wide range of rarity from 10(-3) to 10(-6) and this yield also holds for the MCF7/MNC complex mixture. Comparison with autoMACS and BD IMagnet separators revealed the average yield from the disk (60%) is superior to that of autoMACS (37.3%) and BD IMagnet (48.3%). The advantages of near-constant yield, roughly 30 min of operation, an acceptable level of cell loss, and potentially low cost system should aid in cyto-analysis of rare cells.
Epithelial-mesenchymal transition (EMT) is an important biological process that is characteristic of malignant tumor cells with metastatic potential. We investigated the role of miR-551b in EMT and metastasis in gastric cancer (GC). We found that low miR-551b levels were associated with EMT, metastasis and a poor prognosis in GC patients. Further, two GC cell lines, MNK45 and SGC7901, exhibited lower miR-551b levels than the GES normal stomach cell line. Exposing MNK45 and SGC7901 cells to TGF-β1 resulted in cell morphology changes characteristic of EMT, which was confirmed by Western blot analysis demonstrating low E-Cadherin and high N-Cadherin and Vimentin levels. Treatment with miR-551b mimics inhibited these EMT changes as well as Transwell migration and invasiveness. We identified ERBB4 as a potential target of miR-551b based on patient data from the TCGA. ERBB4 was upregulated in GC specimens, and its high expression correlated with a poor prognosis of GC patients. Dual luciferase assays revealed that miR-551b directly inhibited ERBB4 by binding to its 3′UTR. Moreover, treatment with miR-551b mimics or the ERBB4 inhibitor AST-1306 inhibited EMT in the GC cell lines. Finally, nude mice xenografted with GC cancer cell lines expressing miR-551b mimics exhibited smaller tumors and longer survival than mice engrafted with control GC cancer cells. These data indicate that miR-551b inhibits EMT and metastasis in GC by inhibiting ERBB4. miR-551b and ERBB4 are thus potential therapeutic targets for the treatment of GC.
Cancer metastasis and drug resistance are important malignant tumor phenotypes that cause roughly 90% mortality in human cancers. Current therapeutic strategies, however, face substantial challenges partially due to a lack of applicable pre-clinical models and drug-screening platforms. Notably, microscale and three-dimensional (3D) tissue culture platforms capable of mimicking in vivo microenvironments to replicate physiological conditions have become vital tools in a wide range of cellular and clinical studies. Here, we present a microfluidic device capable of mimicking a configurable tumor microenvironment to study in vivo-like cancer cell migration as well as screening of inhibitors on both parental tumors and migratory cells. In addition, a novel evaporation-based paper pump was demonstrated to achieve adaptable and sustainable concentration gradients for up to 6 days in this model. This straightforward modeling approach allows for fast patterning of a wide variety of cell types in 3D and may be further integrated into biological assays. We also demonstrated cell migration from tumor spheroids induced by an epidermal growth factor (EGF) gradient and exhibited lowered expression of an epithelial marker (EpCAM) compared with parental cells, indicative of partial epithelial-mesenchymal transition (EMT) in this process. Importantly, pseudopodia protrusions from the migratory cells - critical during cancer metastasis - were demonstrated. Insights gained from this work offer new opportunities to achieve active control of in vitro tumor microenvironments on-demand, and may be amenable towards tailored clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.