This study firstly proposes and experimentally demonstrates a phase demodulation method with high sensitivity for interferometric fiber sensors (IFSs) on the basis of the fast Fourier transform of a wavenumber domain. The phase information of IFSs triggered by changes in environmental parameters is obtained by calculating the initial phase variation of a specific Fourier-transformed spatial frequency. Theoretically, phase sensitivity can be improved by n times when the optical path difference (OPD) of a spatial frequency peak is increased by a multiple (n times) of the OPD of other spatial frequency domain peaks. To verify the method experimentally, this study designed a large laterally offset spliced sensor formed by common singlemode fibers on the basis of mode interference. The sensing characteristics of temperature and strain in each set of two-beam interference are analyzed simultaneously by calculating the phase sensitivities of the frequency domain peaks. Furthermore, the highest reported temperature and strain sensitivities of 0.0795 rad/°C and −0.0088 rad/με, respectively, with good repeatability are realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.