Aims Sphingosine-1-phosphate receptor 2 (S1PR2) is a G-protein-coupled receptor that regulates sphingosine-1-phosphate-triggered cellular response. However, the role of S1PR2 in diabetes-induced glomerular endothelial cell dysfunction remains unclear. This study aims to investigate the effect of S1PR2 blockade on the morphology and function of mitochondria in human renal glomerular endothelial cells (HRGECs). Methods HRGECs were pretreated with a S1PR2 antagonist (JTE-013) or a Rho-associated coiled coil-containing protein kinase 1 (ROCK1) inhibitor (Y27632) for 30 min and then cultured with normal glucose (5.5 mM) or high glucose (30 mM) for 72 h. The protein expression levels of RhoA, ROCK1, and Dynmin-related protein-1(Drp1) were evaluated by immunoblotting; mitochondrial morphology was observed by electron microscopy; intracellular levels of ATP, ROS, and Ca 2+ were measured by ATPlite, DCF-DA, and Rhod-2 AM assays, respectively. Additionally, the permeability, apoptosis, and migration of cells were determined to evaluate the effects of S1PR2 and ROCK1 inhibition on high glucose-induced endothelial dysfunction. Results High glucose induced mitochondrial fission and dysfunction, indicated by increased mitochondrial fragmentation, ROS generation, and calcium overload but decreased ATP production. High glucose also induced endothelial cell dysfunction, indicated by increased permeability and apoptosis but decreased migration. However, inhibition of either S1PR2 or ROCK1 almost completely blocked these high glucose-mediated cellular responses. Furthermore, inhibiting S1PR2 resulted in the deceased expression of RhoA, ROCK1, and Drp1 while inhibiting ROCK1 led to the downregulated expression of Drp1. Conclusions S1PR2 antagonist modulates the morphology and function of mitochondria in HRGECs via the positive regulation of the RhoA/ROCK1/Drp1 signaling pathway, suggesting that the S1PR2/ROCK1 pathway may play a crucial role in high glucose milieu. Electronic supplementary material The online version of this article (10.1186/s12882-019-1323-0) contains supplementary material, which is available to authorized users.
A high incidence of hypersensitivity reactions (HSRs) largely limits the use of paclitaxel injection. Currently, these reactions are considered to be mediated by histamine release and complement activation. However, the evidence is insufficient and the molecular mechanism involved in paclitaxel injection-induced HSRs is still incompletely understood. In this study, a mice model mimicking vascular hyperpermeability was applied. The vascular leakage induced merely by excipients (polyoxyl 35 castor oil) was equivalent to the reactions evoked by paclitaxel injection under the same conditions. Treatment with paclitaxel injection could cause rapid histamine release. The vascular exudation was dramatically inhibited by pretreatment with a histamine antagonist. No significant change in paclitaxel injection-induced HSRs was observed in complement-deficient and complement-depleted mice. The RhoA/ROCK signaling pathway was activated by paclitaxel injection. Moreover, the ROCK inhibitor showed a protective effect on vascular leakage in the ears and on inflammation in the lungs. In conclusion, this study provided a suitable mice model for investigating the HSRs characterized by vascular hyperpermeability and confirmed the main sensitization of excipients in paclitaxel injection. Histamine release and RhoA/ROCK pathway activation, rather than complement activation, played an important role in paclitaxel injection-induced HSRs. Furthermore, the ROCK inhibitor may provide a potential preventive approach for paclitaxel injection side effects.
Background/Aim: Both bevacizumab (BEV) and soluble fms-like tyrosine kinase-1 (sFlt-1) have demonstrated anti-angiogenic effects, thereby causing hypertension and proteinuria. We hypothesized that anti-preeclamptic drugs that combat the action of sFlt-1 may reduce BEV's antitumor efficacy. Materials and Methods: 3D co-cultured human mini-tumors consisting of endothelial cells, fibroblasts, and cancer cells were developed. The influence of anti-preeclamptic drugs and BEV on the invasion of minitumors embedded in collagen gel was evaluated. Results: Mini-tumor spheroids that contained MDA-MB-231 cells showed higher invasion ability than spheroids with A549. Among the six anti-preeclamptic drugs investigated, only nicorandil enhanced the invasion of mini-tumors and inhibited the action of BEV. Glibenclamide, an ATP-sensitive potassium channel inhibitor, completely quenched the action of nicorandil on mini-tumors. Conclusion: In the human mini-tumor model, nicorandil aggravated the invasion of mini-tumors. These data raise the possibility that concomitant use of nicorandil counteracts the efficacy of BEV therapy.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.