The emergence and radiation of metazoans have been widely attributed to a progressively more oxidizing surface environment through the Ediacaran-Cambrian transition interval. However, the root causes for atmospheric and oceanic oxygenation are still disputed. Long-term tectonic changes could possibly have led to atmospheric oxygenation but geochemical evidence for this linkage remains elusive. In this study, we analyzed the radiogenic Nd isotopic compositions (εNd) of shallow-marine carbonates from South China in order to track secular variations in terrestrial inputs from Ediacaran to early Cambrian time. Compared with most other geochemical indices, the Nd isotope system in carbonates is less susceptible to early diagenetic exchange and can thus act as a robust proxy for continental materials undergoing weathering. We interpret an abrupt excursion to lower εNd values during the middle Ediacaran as due to rapid exchange of different water masses. However, the more gradual trend towards lower εNd values from the Ediacaran to 2 early Cambrian, accompanied by increasing 87 Sr/ Sr ratios of the studied carbonates, likely indicates the enhanced weathering of old continental rock following the assembly of Gondwana. Increased net accumulation of atmospheric oxygen as a result of enhanced organic carbon burial may have benefited from intense continental denudation.
The largest Precambrian gas field in China has been found in the central Sichuan Basin. It is assumed as a mound-shoal microfacies-controlled dolomite reservoir. Recently, a large strike-slip fault system has been identified in the gas field that needs further study of its effect on the Ediacaran reservoirs for highly efficient exploitation of the gas field. For this contribution, we study the matrix reservoir and fractured reservoir along the strike-slip fault damage zones by the cores, FMI (Formation MicroScanner Image) and logging interpretation data, seismic description and production data. It has shown that the matrix reservoir is tight (porosity less than 3%, permeability less than 0.5 mD) that cannot support economical production by conventional exploitation technology in the deep subsurface. On the other hand, the porosity and permeability of the Ediacaran fractured reservoirs could be increased more than one time and 1–3 orders of magnitude. Except for a few localized fracture zones, the fracture elements and fractured reservoirs show a paw-law distribution with the distance to the fault core. Furthermore, the fault effect is more favorable for the increase in the porosity and permeability of the matrix reservoir in the intraplatform than in the platform margin. The overlapping of mound-shoal microfacies, fracturing and karstification could result in large-scale “sweet spots” of the fractured reservoirs in the fault damage zone. The “sweet spot” of fractured reservoir in the fault damage zone is a new favorable exploitation target in the deep central Sichuan Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.