In this work, a new binary MoS2/Co3O4 nanohybrids was successfully fabricated and the chemical structures, morphologies, electrochemical and optical characterizations were carried out. In addition, heterojunction nanoparticles present in S-scheme structures act as electron traps and promote light absorption capacity for the degradation of Methyl orange (MO) with visible-light activity. MoS2/Co3O4 nanohybrids suggested excellent photocatalytic performance compared to bare MoS2 and Co3O4, where 95.6% of MO was degraded within 170 min, respectively. The results also showed excellent stability and recyclability over five consecutive cycles, without noticeable changes in the nanocomposite structure. The boosted photocatalytic degradation and redox activities of MoS2/Co3O4 can be attributed to the created S-scheme heterostructure to facilitate the separation of and to delay recombination of photoinduced charge carriers. We believe that this strategy of exploiting nanohybrid photocatalysts has great potential in the field of environmental catalysis and diverse applications.
In this study, a novel tungsten disulfide diselenide (WSSe) nanocomposite by a facile hydrothermal process with great capable photocatalytic efficiency for hydrogen evolution from water and organic compound removal was discussed. The WSSe nanocomposites form heterojunctions in order to inhibit the quick recombination rate of photo-induced electrons and holes. This is considered to be a useful method in order to enhance the capability of photocatalytic hydrogen production. The hydrogen production rate of the WSSe nanocomposites approaches 3647.4 μmol/g/h, which is 12 and 11 folds the rates of the bare WS2 and WSe2, respectively. Moreover, the excellent photocatalytic performance for Methylene blue (MB) removal (88%) was 2.5 and 1.8 times higher than those of the bare WS2 and WSe2, respectively. The great photocatalytic efficiency was owing to the capable electrons and holes separation of WSSe and the construction of the heterostructure, which possessed vigorous photocatalytic oxidation and reduction potentials. The novel one-dimensional structure of the WSSe heterojunction shortens the transport pathway of the photo-induced electrons and holes. It possesses the great capable photocatalytic efficiency of the hydrogen production and organic dye removal. This study offers an insight into the route of interfacial migration and separation for induced charge carriers in order to generate clean hydrogen energy and to solve the issue of environmental pollution.
In this study, a novel tungsten disulfide/tungsten diselenide (WS2/WSe2) heterojunction photocatalyst by a facile hydrothermal process with great capable photocatalytic efficiency for hydrogen evolution from water and organic compound removal was discussed. The WS2/WSe2 heterojunction photocatalyst to form heterojunctions to inhibit the quick recombination rate of photo-response holes and electrons is reflected to be a useful method to enhance the capability of photocatalysis hydrogen production. The hydrogen production rate of the WS2/WSe2 photocatalyst approach is 3856.7 μmol/g/h, which is 12 and 11 folds the efficiency of bare WS2 and WSe2, respectively. Moreover, the excellent photocatalytic performance for Congo Red (CR) removal (92.4%) was 2.4 and 2.1 times higher than those of bare WS2 and WSe2, respectively. The great photocatalytic efficiency was owing to the capable electrons and holes separation of WS2/WSe2 and the construction of Z-scheme heterostructure, which possessed vigorous photocatalytic oxidation and reduction potentials. The novel one-dimensional structure of WS2/WSe2 heterojunction shortens the transport pathway of photo-induced electrons and holes. This work provided an insight to the pathway of interfacial separation and transferring for induced charge carriers, which can refer to the interfacial engineering of developed nanocomposite photocatalysts. It possessed great capable photocatalytic efficiency of hydrogen production and organic dye removal. This study offers an insight to the route of interfacial migration and separation for induced charge carriers to generating clean hydrogen energy and solve environmental pollution issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.