Early blight, caused by the necrotrophic fungus Alternaria solani, is an important foliar disease that causes major yield losses of potato. Effector proteins secreted by pathogens to host cells can inhibit host immune response to pathogens. Currently, the function of effector proteins secreted by A. solani during infection is poorly understood. In this study, we identified and characterized a novel candidate effector protein, AsCEP50. AsCEP50 is a secreted protein that is highly expressed throughout the infection stages of A. solani. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana and tomato demonstrated that AsCEP50 is located on the plasma membrane of N. benthamiana and regulates senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Δ50 mutants were unaffected in vegetative growth, spore formation and mycelium morphology. However, the deletion of AsCEP50 significantly reduced virulence, melanin production and penetration of A. solani. These results strongly supported that AsCEP50 is an important pathogenic factor at the infection stage and contributes to the virulence of Alternaria solani.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.