Background:The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. Results: This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. Conclusion: CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https:// github.com/wangvsa/CMSA.
The semantics of HPC storage systems are defined by the consistency models to which they abide. Storage consistency models have been less studied than their counterparts in memory systems, with the exception of the POSIX standard and its strict consistency model. The use of POSIX consistency imposes a performance penalty that becomes more significant as the scale of parallel file systems increases and the access time to storage devices, such as node-local solid storage devices, decreases. While some efforts have been made to adopt relaxed storage consistency models, these models are often defined informally and ambiguously as by-products of a particular implementation. In this work, we establish a connection between memory consistency models and storage consistency models and revisit the key design choices of storage consistency models from a high-level perspective. Further, we propose a formal and unified framework for defining storage consistency models and a layered implementation that can be used to easily evaluate their relative performance for different I/O workloads. Finally, we conduct a comprehensive performance comparison of two relaxed consistency models on a range of commonly-seen parallel I/O workloads, such as checkpoint/restart of scientific applications and random reads of deep learning applications. We demonstrate that for certain I/O scenarios, a weaker consistency model can significantly improve the I/O performance. For instance, in small random reads that typically found in deep learning applications, session consistency achieved an 5x improvement in I/O bandwidth compared to commit consistency, even at small scales.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.