This study was aimed to clarify whether the cuneothalamic relay neurons (CTNs) in the rat cuneate nucleus contained glycine or whether the neurons were modulated directly by presynaptic glycine-IR terminals. For this purpose, retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) and immunoperoxidase labelling for glycine have been used to ascertain if the CTNs in the rat are glycine-immunoreactive (glycine-IR). Our results have shown that the WGA-HRP-labelled CTNs (mean area = 318 +/- 6.5 microm(2)) were not reactive for glycine. Glycine immunoreactivity, however, was localized in some small-sized neurons (mean area = 210 +/- 6.2 microm(2)) and axon terminals associated with the CTNs. The synaptic organization between the glycine-IR terminals and CTNs was further analyzed using anti-glycine postembedding immunogold labelling. By electron microscopy, the immunogold-labelled glycine-IR terminals containing pleomorphic synaptic vesicles formed symmetrical synaptic contacts with the dendrites, dendritic spines, and somata of CTNs. Quantitative estimation showed that the mean ratios of glycine-IR terminals to total terminals associated with the soma, proximal dendrites and distal dendrites of the CTN were 49.5, 45.2, and 45.8%, respectively. The higher incidence of glycine-IR terminals on the soma, however, was not significantly different from that of the proximal and distal dendrites. Notwithstanding the above, this study has shown a large number of glycine-IR terminals making direct synaptic contacts with CTNs, suggesting that glycine is one of the important neurotransmitters involved in postsynaptic inhibition on the cuneothalamic relay neurons to modulate incoming somatosensory information from forelimb areas in the rat.
The present study examined the synaptic organization of external cuneothalamic neurons and their relationships with primary afferents in the gerbil external cuneate nucleus (ECN) following an injection of horseradish peroxidase (HRP) into the anterodorsal cap of the ventrobasal thalamus in conjunction with a simultaneous injection of HRP into the contralateral brachial and cervical nerve plexuses. The thalamus-projecting neurons have been shown to be confined to the intermediate portion of the caudal half of the ECN at the light microscopic level (Lan et al., 1994c). In this study, HRP-labelled external cuneothalamic neurons were ultrastructurally characterized by their relatively small-sized soma bearing a variable number of somal spines. Their nucleus had a slightly indented contour with an eccentric nucleolus. The HRP-labelled somata were postsynaptic to many axon terminals, which were classified into round (Rs type; 53.0%), pleomorphic (Ps type; 32.7%), and flattened (Fs type; 14.3%) vesicle-containing boutons. The HRP-labelled dendritic elements were postsynaptic to a greater number of axon terminals, which were also classified into the round (Rd; 64.7%), pleomorphic (Pd; 25.2%), and flattened (Fd; 10.1%) type boutons. These presynaptic axonal boutons tended to synapse on distal and secondary dendrites of external cuneothalamic neurons. In the present simultaneous HRP labelling study, some of the primary afferent terminals made direct synaptic contacts with the dendrites of the external cuneothalamic neurons. In view of the multiple inputs onto the external cuneothalamic neurons, impinging particularly on their somata and secondary dendrites, it is suggested that the proprioceptive information reaching these neurons is intensively modulated and integrated before transmission ultimately to the cerebral sensorimotor cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.