Photocatalytic degradation of bisphenol A in aqueous solution by UV-TiO2 was studied in self-made photocatalysis reactor. The results showed that BPA was degraded effectively in UV-TiO2 photocatalysis system, and the processe followed Langmuir-Hinshelwood kinetic model. When TiO2 was dosed at 1.0 g/L, air amount was 1.2 L/min, BPA initial concentration was 10 mg/L with pH=5.5, and irradiated by a 15 W low pressure mercury vapor discharge lamp, the removal rate of BPA was up to 97%, and BPA was completely removed in 80 min when pH≥9.5; The photocatalytic removal rate constant was strongly related to the above factors.
Fluorescence spectroscopy was performed to investigate the composition changes and characteristics of the leachate DOM (dissolved organic matter) during UV-TiO2photocatalytic treatment process. The results showed that fulvic-like, tryptophan-like and humic acids-like matters were the main compounds in leachate. During photocatalytic treatment process, fluorescence spectroscopy of DOM changed considerably. The final products were mainly fulvic-like and tryptophan-like matters. In general, the fluorescence signals of humic acids-like matters had the most significant change, which disappeared entirely after 60 h treatment, implying that humic acids-like matters can be degraded preferentially by photocatalysis. The other notable change was in VIS fulvic-like matters region, which suggested that fulvic-like matters can be significantly degraded. In 72 h photocatalytic effluent, VIS fulvic-like, tryptophan-like and tyrosine-like matters were remained, and the last two matters were the dominant fractions. These results indicated that fulvic-like and humic acids-like matters with macromolecular can be degraded into protein-like matters with micro-molecular by photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.