Rapid collapse of extensive kelp forests and a regime shift to tropicalized temperate reefs followed extreme heatwaves and decades of gradual warming. Abstract:Ecosystem reconfigurations arising from climate driven changes in species distributions are expected to have profound ecological, social and economic implications. Here, we reveal a rapid climate driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. Following decades of ocean warming, extreme marine heatwaves forced a 100 km range contraction of extensive kelp forests, and saw temperate species replaced by seaweeds, invertebrates, corals and fishes characteristic of subtropical and tropical waters. This community wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Main Text:Broad scale losses of species which provide the foundations for habitats cause dramatic shifts in ecosystem structure because they support core ecological processes (1-3). Such habitat loss can lead to a regime shift where reinforcing feedback mechanisms intensify to provide resilience to an alternate community configuration, often with profound ecological, social and economic consequences (4-6). Benthic marine regime shifts have been associated with the erosion of ecological resilience through overfishing or eutrophication, altering the balance between consumers and resources, rendering ecosystems vulnerable to major disturbances (1, 2,6,7). Now, climate change is also contributing to the erosion of resilience (8,9), where increasing temperatures are modifying key physiological, demographic and community scale processes (8, 10), driving species redistribution at a global scale and rapidly breaking down long-standing biogeographic boundaries (11,12). These processes culminate in novel ecosystems where tropical and temperate species interact with unknown implications (13). Here we document how a marine heatwave caused the loss of kelp forests across ~2,300 km 2 of Australia's Great Southern Reef, forcing a regime shift to seaweed turfs. We demonstrate a rapid 100 km rangecontraction of kelp forests and a community-wide shift toward tropical species with ecological processes suppressing kelp forest recovery.To document ecosystem changes we surveyed kelp forests, seaweeds, fish, mobile invertebrates and corals at 65 reefs across a ~2,000 km tropical to temperate transition zone in western Australia (14). Surveys were conducted between 2001 to 2015, covering the years before and after an extreme marine heatwave impacted the region.The Indian Ocean adjacent to western Australia is a 'hotspot' where the rate of ocean warming is in the top 10% globally (15), and isotherms are shifting poleward at a rate of 20 -50 km per decade (16). Until recently, kelp forests were dominant along >800 km of the west coast (8), covering 2,266 km 2 of rocky reefs between 0 -30 m depth south of 27.7°S (Fig. 1). Kelp forests along the midwest section of this ...
Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorterterm extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010-2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a four-fold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.
Climatically extreme weather events often drive long-term ecological responses of ecosystems. By disrupting the important symbiosis with zooxanthellae, Marine Cold Spells (MCS) can cause bleaching and mortality in tropical and subtropical scleractinian corals. Here we report on the effects of a severe MCS on high latitude corals, where we expected to find bleaching and mortality. The MCS took place off the coast of Perth (32 • S), Western Australia in 2016. Bleaching was assessed before (2014) and after (2017) the MCS from surveys of permanent plots, and with timed bleaching searches. Temperature data was recorded with in situ loggers. During the MCS temperatures dipped to the coldest recorded in ten years (15.3 • C) and periods of <17 • C lasted for up to 19 days. Only 4.3% of the surveyed coral colonies showed signs of bleaching. Bleaching was observed in 8 species where those most affected were Plesiastrea versipora and Montipora mollis. These findings suggest that high latitude corals in this area are tolerant of cold stress and are not persisting near a lethal temperature minimum. It has not been established whether other environmental conditions are limiting these species, and if so, what the implications are for coral performance on these reefs in a warmer future.
Aim: Genetic connectivity is a key component of species resilience to climate change in terms of recovery capacity following disturbance and capacity to disperse to novel locations as the climate warms and isotherms shift poleward. We aimed to strengthen our understanding of resilience in this context by characterizing patterns of connectivity and genetic diversity in a broadcast spawning coral across a tropical-temperate transition zone. We hypothesize genetic differentiation between tropical and temperate populations and decreasing genetic diversity with higher latitudes. Location: Western Australia (WA).Taxon: Turbinaria species complex. Turbinaria 'reniformis' Oken, 1815 (Scleractinia: Dendrophylliidae).Methods: A total of 930 target corals were sampled from 10 locations between 13 and 32° latitude spanning a 9°C mean temperature range. In situ species identification of T. reniformis is hindered by morphological plasticity and homoplasy with sister species. We combined Sanger sequencing of two mitochondrial DNA markers and high-throughput genotyping by sequencing (GBS) to isolate a single genetic Turbinaria lineage from our dataset through which patterns of genetic flow and diversity along the WA coastline could be explored using population-and individual-based clustering analyses.Results: Mitochondrial DNA sequence variation was low among Turbinaria samples and could not resolve individual species. Using GBS, we identified three genetically distinct lineages. Subsequent analyses within one of these lineages revealed strong spatial subdivision with 2-3 genetic clusters. While temperate populations were genetically diverged from more tropical sites, we did not observe declines in genetic diversity with latitude.Main conclusions: Tropical populations of T. 'reniformis' in Western Australia exhibit strong genetic connectivity, which extends to a southern limit at sub-tropical Shark Bay. Temperate populations are genetically isolated from their tropical counterparts but have relatively high genetic diversity. While the maintenance of genetic variation in temperate populations may provide some resilience to future climate scenarios, their isolation may increase their vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.