Since the report of its discovery in E. coli in late 2015, the plasmid-mediated colistin resistance gene, mcr-1, has been detected in various bacterial species in clinical setting and various environmental niches. However, the transmission mechanisms of this gene in Salmonella is less defined. In this study, we conducted a comprehensive study to characterize the genetic features of mcr-1-positive Salmonella strains isolated from animals and foods. Our data revealed that Salmonella recovered from animals and food specimens exhibited highly different PFGE patterns, and acquired mcr-1-encoding plasmids via different mechanism. Plasmids harboring mcr-1 in Salmonella food isolates were all conjugative and similar as plasmids reported in other species of Enterobacteriaceae, whereas mcr-1-bearing plasmids from animal Salmonella isolates were not conjugative, and belonged to the IncHI2 type. The lack of a region carrying the tra genes was found to account for the inability to undergo conjugation for various sizes of IncHI2 plasmids harbored by animal strains. These data suggest that transmission of mcr-1-positive Salmonella from animal to food might not be a common event and food isolates may have acquired mcr-1-bearing plasmids from other mcr-1-positive bacteria such as E. coli, which co-exist in food samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.