Fiberglass prepared from broken waste glass can be used in epoxy asphalt mixtures for performance enhancement and a toughening effect. There is no systematic study on the influence mechanism of the size and the amount of glass fiber on the properties of epoxy asphalt mixtures. The effects of fiberglass on the properties of epoxy asphalt concrete were evaluated using a tensile test, three-point bending test, four-point bending fatigue test and an SEM scanning test. The results verify that the tensile strength of epoxy asphalt mastic with a 6 mm length and 2% content increased the most. Compared with the nondoped glass fiber, it increased by 69.2%. Under the influence of the internal composition of the asphalt mixture, the optimal ratio scheme is different from that of epoxy asphalt mastic. A microscopic analysis showed that uniformly dispersed fiberglass in the epoxy asphalt mixture forms a spatial network structure, leading to reinforcement and the restraint of microcrack expansion. The addition of fiberglass with a length of 9 mm and at a concentration of 5% to the epoxy asphalt mixture resulted in the maximum road performance. The Marshall stability increased by 43.5%, and the flexural and tensile strength increased by 33.7%. The fiberglass length is the most important factor limiting the strength and toughening effects of epoxy asphalt mixtures.
Titanium dioxide (TiO 2 ) was recently employed to apply onto road surfaces to degrade the harmful compounds from vehicle emissions. However, it remains a challenging task to find a highly compatible pavement type for TiO 2 application to achieve durable and efficient air-purifying performance. This study proposed to coat TiO 2 particles onto semi-flexible pavement surface and tried to investigate an optimum coating method. Three coating methods, including direct mixing TiO 2 (MT) with asphalt mixture, spraying dry TiO 2 (ST) coating and watersolution-based TiO 2 (WT) coating on semi-flexible pavement surface. To achieve this objective, semi-flexible samples were prepared to evaluate and compare the performances of three coating methods by employing resistance to wearing, NO removal efficiency tests and residual texture depth tests. It was found that the ST method not only provided better NO degrading efficiency but also improved the resistance to wearing than the other two methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.