Phase change materials attract tremendous interest for building energy conservation due to their auto-temperature regulation and thermal energy storage capacity. However, its practical application is hindered due to the leakage problem and poor photothermal conversion efficiency. To address these issues, a scalable wood-based phase change material was prepared by impregnating polyethylene glycol (PEG) into Fe3O4 doped wood particles and subsequent a hot press in this study. PEG was encapsulated by wood particles through its abundant pore structure and leakage rate of prepared wood-based phase change material (FWPCM) was only 2.9%, which solved the leakage problem effectively. FWPCM presented high latent heat of 73 J/g and slowed down the temperature change obviously. Addition of Fe3O4 powder endowed FWPCM a high photothermal conversion efficiency and thermal conductivity (0.3545 W/(m*K) was increased by 125% compared to PW. So FWPCM had potential to be used as building engineering material for energy collecting, storage and conversion benefited by its great thermal performance, superior durability, simple preparing process and acceptable mechanical property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.