The functional outcome after peripheral nerve repair is often unpredictable for many reasons, e.g., the severity of neuronal death and scarring. Axonal degeneration significantly affects outcomes. Post-injury axonal degeneration in peripheral nerves is accompanied by myelin degradation initiated by Schwann cells (SCs), which activate autophagy, a ubiquitous cytoprotective process essential for degrading and recycling cellular constituents. Scar formation occurs concomitantly with nerve insult and axonal degeneration. The association between SC autophagy and the mechanisms of nerve scar formation is still unknown. A rat model of peripheral nerve lesions induced by sciatic nerve transection injuries was used to examine the function of autophagy in fibrosis reduction during the early phase of nerve repair. Rats were treated with rapamycin (autophagy inducer) or 3-methyladenine (autophagy inhibitor). One week after the nerve damage, fibrosis was potently inhibited in rapamycin-treated rats and, based on gait analysis, yielded a better functional outcome. Immunohistochemistry showed that the autophagic activity of SCs and the accumulation of neurofilaments were upregulated in rapamycin-treated rats. A deficiency of SC autophagic activity might be an early event in nerve scar formation, and modulating autophagy might be a powerful pharmacological approach for improving functional outcomes.
Delayed G-CSF treatment at the subacute stage of severe contusive SCI promoted spinal cord preservation and improved functional outcomes. The mechanism of G-CSF's protection may be related in part to attenuating the infiltration of microglia and macrophages.
Inflammatory response after peripheral nerve injury is required for clearance of tissue debris and effective regeneration. Studies have revealed that hyaluronic acid (HA) may exert different properties depending on their molecular size. High molecular weight HA (>>1,000 kDa; HMW-HA) displays immunosuppressive properties, whereas low molecular weight HA (<800 kDa; LMW-HA) induces proinflammatory responses. The role of HMW-HA interaction with CD44, a major HA receptor, in neuroinflammatory responses has not been fully elucidated. The purpose of this experimental study was to investigate the effects of topical applications of HMW-HA on the sciatic nerve injury in an adult rat model. At the crush site on the sciatic nerve, the recordings of compound muscle action potential (CMAP) and the levels of several proteins related to inflammatory response were assessed at time intervals of 2, 4, and 6 weeks postsurgery. Here, we show that the recovery effect of HMW-HA treatment had significantly shortened latency and increased amplitude of CMAP compared with crushed alone, crushed plus γ-secretase inhibitor with or without HA treatment at 6 weeks after surgery. Our data reveal that HMW-HA could downregulate the expression of IL1-β, TLR4, and MMP-9, whereas these proteins expression were increased when the CD44-ICD activity was inhibited using γ-secretase inhibitor. Our findings demonstrated a novel role of CD44-ICD in HA-mediated recovery of peripheral nerve injury. Clinical relevance: an alternative for the regeneration of peripheral nerve injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.