We propose a spurious region guided refinement approach for robustness verification of deep neural networks. Our method starts with applying the DeepPoly abstract domain to analyze the network. If the robustness property cannot be verified, the result is inconclusive. Due to the over-approximation, the computed region in the abstraction may be spurious in the sense that it does not contain any true counterexample. Our goal is to identify such spurious regions and use them to guide the abstraction refinement. The core idea is to make use of the obtained constraints of the abstraction to infer new bounds for the neurons. This is achieved by linear programming techniques. With the new bounds, we iteratively apply DeepPoly, aiming to eliminate spurious regions. We have implemented our approach in a prototypical tool DeepSRGR. Experimental results show that a large amount of regions can be identified as spurious, and as a result, the precision of DeepPoly can be significantly improved. As a side contribution, we show that our approach can be applied to verify quantitative robustness properties.
To analyse local robustness properties of deep neural networks (DNNs), we present a practical framework from a model learning perspective. Based on black-box model learning with scenario optimisation, we abstract the local behaviour of a DNN via an affine model with the probably approximately correct (PAC) guarantee. From the learned model, we can infer the corresponding PAC-model robustness property. The innovation of our work is the integration of model learning into PAC robustness analysis: that is, we construct a PAC guarantee on the model level instead of sample distribution, which induces a more faithful and accurate robustness evaluation. This is in contrast to existing statistical methods without model learning. We implement our method in a prototypical tool named DeepPAC. As a black-box method, DeepPAC is scalable and efficient, especially when DNNs have complex structures or high-dimensional inputs. We extensively evaluate DeepPAC, with 4 baselines (using formal verification, statistical methods, testing and adversarial attack) and 20 DNN models across 3 datasets, including MNIST, CIFAR-10, and ImageNet. It is shown that DeepPAC outperforms the state-of-the-art statistical method PROVERO, and it achieves more practical robustness analysis than the formal verification tool ERAN. Also, its results are consistent with existing DNN testing work like DeepGini.
CCS CONCEPTS• Security and privacy → Software and application security;• Computing methodologies → Artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.