A new crack detection approach based on local binary patterns (LBP) with support vector machine (SVM) was proposed in this paper. The propsed algorithm can extract the LBP feature from each frame of the video taken from the road. Then, the dimension of the LBP feature spaces can be reduced by Principal Component Analysis(PCA). The simplified samples are trained to be decided the type of crack using Support Vector Machine(SVM). In order to reflect the directional imformation in detail, the LBP processed image is devided into nine sub-blocks. In this paper, driving tests were performed 10 times and 12,000 image data were applied to the proposed algorithm. The average accuracy of the proposed algorithm with sub-blocks is 91.91%, which is about 6.6% higher than the algorithm without sub-blocks. The LBP-PCA with SVM applying sub-blocks reflects the directional information of the crack so that it has high accuracy of 89.41% and 88.24%, especially in transverse and longitudinal cracks. In the performance analysis of different crack classifiers, the F-Measure, which considered balance between the precision and the recall, of alligator cracks classifier was the highest at 0.7601 and hence crack detection performance is higher than others.
Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score.
This paper proposes a novel pavement transverse crack detection model based on time-frequency analysis and convolutional neural networks. The accelerometer and smartphone installed in the vehicle collect the vibration response between the wheel and the road, such as pavement transverse cracks, manholes, and normal pavement. Since the original vibration signal can only contain a onedimensional domain (time-acceleration). Time-frequency analysis, including Short-Time Fourier Transform and Wavelet Transform, can transfer the one-dimensional vibration signal into a twodimensional time-frequency-energy spectrum matrix. The energy spectrum matrix obtained from STFT and WT can effectively obtain different signal features in terms of time and frequency features. If STFT and WT are further combined with CNN models, STFT-CNN and WT-CNN, respectively, pavement transverse cracks can be detected more accurately. In this study, the reliability of the developed pavement transverse cracks detection model was evaluated based on the data collected by conducting a road driving test. Analysis results of the developed model show that the accuracies of WT-CNN and STFT-CNN are 97.2% and 91.4%, respectively. The F1 scores to analyse the practicability and the adaptability of the crack detection model of WT-CNN and STFT-CNN are 96.35% and 89.56%, respectively.
[1] The morphology of low-latitude ionosphere is greatly affected by the zonal electric field, especially at disturbance time. In this study, historical data from two low-latitude ionosondes located at Haikou and Chongqing, China, are used to study the disturbance vertical drift properties of ionospheric F layer during the initial and main phases of 50 intense storms. The disturbance drift from an empirical model is used as an indicator to denote the E Â B disturbance magnitude. It is found that the drifts both at the base and at the peak height are increased in magnitude when the disturbance becomes stronger. For the same disturbance, ionospheric vertical drifts at the base height are comparable with those at the peak height over Haikou, but they are larger than the latter over Chongqing, both drifts being smaller than those at the magnetic equator. The drifts are larger in daytime than in nighttime, but no rule is found on their seasonal dependence. This indicates that low-latitude storm time ionospheric vertical drift of the ionospheric layer exhibits both consistent and individual properties at different locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.