Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score.
Frozen soils are encountered on construction sites in the polar regions or regions where artificial frozen ground (AFG) methods are used. Thus, efficient ways to monitor the behavior and potential failure of frozen soils are currently in demand. The advancement of thermographic technology presents an alternative solution as deformation occurring in frozen soils generate heat via inter-particle friction, and thus a subsequent increase in temperature. In this research, uniaxial compression tests were conducted on cylindrical frozen soil specimens of three types, namely clay, sand, and gravel. During the tests, surface temperature profiles of the specimens were recorded through an infrared video camera. The thermographic videos were analyzed, and subsequent results showed that temperature increases caused by frictional heat could be observed in all three frozen soil specimens. Therefore, increases in temperature can be deemed as an indicator for the potential failure of frozen soils and this method is applicable for monitoring purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.