Bamboo mosaic virus (BaMV) is a positive-sense RNA virus belonging to the genus Potexvirus. Open reading frame 1 (ORF1) encodes the viral replication protein that consists of a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain from the N to C terminus. ORF5 encodes the viral coat protein (CP) required for genome encapsidation and the virus movement in plants. In this study, application of a yeast-two hybrid assay detected an interaction between the viral HLD and CP. However, the interaction did not affect the NTPase activity of the HLD. To identify the critical amino acids of CP interacting with the HLD, a random mutational library of CP was created using error-prone PCR, and the mutations adversely affecting the interaction were screened by a bacterial two-hybrid system. As a result, the mutations A209G and N210S in CP were found to weaken the interaction. To determine the significance of the interaction, the mutations were introduced into a BaMV infectious clone, and the mutational effects on viral replication, movement, and genome encapsidation were investigated. There was no effect on accumulations of BaMV CP and genomic RNAs within protoplasts; however, the virus cell-to-cell movement in plants was restricted. Sequence alignment revealed that A209 of BaMV CP is conserved in many potexviruses. Mutation of the corresponding residue in Foxtail mosaic virus CP also reduced the viral HLD-CP interaction and restricted the virus movement, suggesting that interaction between CP and a widely conserved HLD in the potexviral replication protein is crucial for viral trafficking through plasmodesmata.To spread throughout hosts, plant viruses have evolved a number of pathways to allow their progeny to pass across plasmodesmata into neighboring cells and travel along the vascular system (8, 26). The virus-encoded movement proteins play a pivotal role through diverse mechanisms in these cellto-cell and vascular transports. Ancillary proteins, for example, the viral coat proteins (CPs) in some cases, and host factors may also participate in these processes. Numerous studies have been conducted to elucidate the movement mechanisms. Many of the results have been summarized in a number of recent reviews (23,28,30). They provided in-depth discussions on issues such as the identification and characterization of the involved viral and host proteins and the transport models for some exemplified viruses, such as Tobacco mosaic virus (TMV) and Potato virus X (PVX). Despite these efforts, many details of the processes remain elusive.Members of the genus Potexvirus have a positive-strand RNA genome that contains five open reading frames (ORFs), a 5Ј methyl cap, and a 3Ј poly(A) tail. ORF1 encodes the viral replication protein, consisting of a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain (RdRp) from the N terminus to the C terminus (16,17). The HLD has RNA 5Ј-triphosphatase and nucleoside triphosphatase (NTPase) activities (18). With the co...
Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5′ cap and a 3′ poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5′ cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4.
A Burkholderia gladioli strain, named BBB-01, was isolated from rice shoots based on the confrontation plate assay activity against several plant pathogenic fungi. The genome of this bacterial strain consists of two circular chromosomes and one plasmid with 8,201,484 base pairs in total. Pangenome analysis of 23 B. gladioli strains suggests that B. gladioli BBB-01 has the closest evolutionary relationship to B. gladioli pv. gladioli and B. gladioli pv. agaricicola. B. gladioli BBB-01 emitted dimethyl disulfide and 2,5-dimethylfuran when it was cultivated in lysogeny broth and potato dextrose broth, respectively. Dimethyl disulfide is a well-known pesticide, while the bioactivity of 2,5-dimethylfuran has not been reported. In this study, the inhibition activity of the vapor of these two compounds was examined against phytopathogenic fungi, including Magnaporthe oryzae, Gibberella fujikuroi, Sarocladium oryzae, Phellinus noxius and Colletotrichumfructicola, and human pathogen Candida albicans. In general, 2,5-dimethylfuran is more potent than dimethyl disulfide in suppressing the growth of the tested fungi, suggesting that 2,5-dimethylfuran is a potential fumigant to control plant fungal disease.
Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.