GspE belongs to a secretion NTPase superfamily, members of which are involved in type II/IV secretion, type IV pilus biogenesis and DNA transport in conjugation or natural transformation. Predicted to be a cytoplasmic protein, GspE has nonetheless been shown to be membrane‐associated by interacting with the N‐terminal cytoplasmic domain of GspL. By taking biochemical and genetic approaches, we observed that ATP binding triggers oligomerization of Xanthomonas campestris XpsE (a GspE homolog) as well as its association with the N‐terminal domain of XpsL (a GspL homolog). While isolated XpsE exhibits very low intrinsic ATPase activity, association with XpsL appears to stimulate ATP hydrolysis. Mutation at a conserved lysine residue in the XpsE Walker A motif causes reduction in its ATPase activity without significantly influencing its interaction with XpsL, congruent with the notion that XpsE–XpsL association precedes ATP hydrolysis. For the first time, functional significance of ATP binding to GspE in type II secretion system is clearly demonstrated. The implications may also be applicable to type IV pilus biogenesis.
GspG, -H, -I, -J and -K proteins are members of the pseudopilin family. They are the components required for the type II secretion pathway, which translocates proteins across the outer membrane of Gram-negative bacteria to the extracellular milieu. They were predicted to form a pilus-like structure, and this has been shown for PulG of Klebsiella oxytoca by using electron microscopy. In the present study, we performed biochemical analyses of the XpsG protein of Xanthomonas campestris pv. campestris and observed that it is a pillar-like structure spanning the cytoplasmic and outer membranes. Subcellular fractionation revealed a soluble form (SF) of XpsG, in addition to the membrane form. Chromatographic analysis of SF XpsG in the absence of a detergent indicated that it is part of a large complex (>440 kDa). In vitro studies indicated that XpsG is prone to aggregate in the absence of a detergent. We isolated and characterized a non-functional mutant defective in forming the large complex. It did not interfere with the function of wild-type XpsG and was not detectable in the SF. Moreover, unlike wild-type XpsG, which was distributed in both the cytoplasmic and outer membranes, it appeared only in the cytoplasmic membrane. When wild-type XpsG was co-expressed with His6-tagged XpsH but not with untagged XpsH, SF XpsG bound to nickel and co-eluted with XpsH. This result suggests the presence of other pseudopilin components in the XpsG-containing large-sized molecules.
In many eukaryotic organisms, homeobox genes are important regulators that specify the cell fate and body plan in early embryogenesis. In this study, a gene designated OSTF1 (Oryza sativa transcription factor 1) encoding a homeodomain protein in rice was isolated and characterized. The encoded OSTF1, although sharing only approximately 51% sequence identity with other HD-GL2 members, contains four characteristic motifs (an N-terminal acidic region, a homeodomain, a truncated leucine zipper, and a START domain). OSTF1 was detected as a single copy gene in rice. The transcripts were absent in young panicle or mature spikelet before anthesis, but appeared very early in the pollinated grain with a transient profile. In vegetative tissues examined, expression was only detectable in root. In situ hybridization analysis on developing grains revealed that OSTF1 was strongly and uniformly expressed in the embryo at the globular stage and preferentially localized to the protoderm at 3-6 d after pollination. Expression was also detectable in the integument and throughout the endosperm. Although OSTF1 is not closely related to the remaining HD-GL2 members in sequences, this gene exhibits an analogous epidermis-preferential expression pattern.
The cytoplasmic membrane proteins XpsL, XpsM and XpsN are components required for type II secretion in Xanthomonas campestris pv. campestris. We performed metal-chelating chromatography to partially purify the His(6)-tagged XpsM (XpsMh)-containing complex. Immunoblot analysis revealed that both XpsL and XpsN co-eluted with XpsMh. The co-fractionated XpsL and XpsN proteins co-immune precipitated with each other, suggesting the existence of an XpsL-XpsM-XpsN complex. Ternary complex formation does not require other Xps protein components of the type II secretion apparatus. Further purification upon size-exclusion chromatography revealed that XpsN is prone to dissociate from the complex. Reassociation of XpsN with the XpsL-XpsMh complex immobilized on a nickel column is more effective than with XpsMh alone. Membrane-mixing experiments suggested that the XpsL-XpsMh complex and XpsN probably dissociate and reassociate in the membrane vesicles. Comparison of the half-lives of the XpsL-XpsMh-XpsN and XpsL-XpsMh complexes revealed that XpsL dissociates from the latter at a faster rate than from the former. Dissociation and reassociation between XpsL and XpsM were also demonstrated with membrane-mixing experiments. A dynamic model is proposed for the XpsL-XpsM-XpsN complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.