Background/Aims: MicroRNAs (miRNAs, miRs) have emerged as important post-transcriptional regulators in various cancers. miR-543 has been reported to play critical roles in hepatocellular carcinoma and colorectal cancer, however, the role of miR-543 in the pathogenesis of prostate cancer has not been fully understood. Methods: Expression of miR-543 and Raf Kinase Inhibitory Protein (RKIP) in clinical prostate cancer specimens, two prostate cancer cell lines, namely LNCAP and C4-2B, were determined. The effects of miR-543 on proliferation and metastasis of tumor cells were also investigated with both in vitro and in vivo studies. Results: miR-543 was found to be negatively correlated with RKIP expression in clinical tumor samples and was significantly upregulated in metastatic prostate cancer cell line C4-2B compared with parental LNCAP cells. Further studies identified RKIP as a direct target of miR-543. Overexpression of miR-543 downregulated RKIP expression and promoted the proliferation and metastasis of cancer cells, whereas knockdown of miR-543 increased expression of RKIP and suppressed the proliferation and metastasis of cancer cells in vitro and in vivo. Conclusion: Our study demonstrates that miR-543 promotes the proliferation and metastasis of prostate cancer via targeting RKIP.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and inflammation, and the pathogenic mechanism of NAFLD is poorly understood. Ubiquitin-specific peptidase 10 (USP10), a member of the ubiquitin-specific protease family, is involved in environmental stress responses, tumor growth, inflammation, and cellular metabolism. However, the role of USP10 in hepatic steatosis, insulin resistance, and inflammation remains largely unexplored. USP10 expression was detected in livers of patients with NAFLD, mice with high-fat diet (HFD)-induced obesity, and genetically obese (ob/ob) mice, as well as in palmitate-induced hepatocytes. The function of USP10 in hepatic steatosis, insulin resistance, and inflammation was investigated using hepatocyte-specific USP10 deficiency or overexpression in mice induced by HFD treatment or genetic defect. The molecular mechanisms underlying USP10-regulated hepatic steatosis were further investigated in HFD-treated mice. USP10 expression was significantly decreased in the fatty livers of NAFLD patients and obese mice and in palmitate-treated hepatocytes. USP10 deficiency exacerbated the metabolic dysfunction induced by HFD treatment for 12 weeks. Conversely, USP10 overexpression significantly suppressed metabolic dysfunction in mice after HFD treatment and inhibited the development of NAFLD in ob/ob mice. Further investigation indicated that USP10 regulates hepatic steatosis by interacting with Sirt6 and inhibiting its ubiquitination and degradation. Sirt6 overexpression markedly ameliorated the effects of USP10 deficiency in hepatic steatosis, insulin resistance, and inflammation. Conversely, Sirt6 deficiency decreased the ameliorative effects of USP10 overexpression in response to HFD treatment. Conclusion: USP10 inhibits hepatic steatosis, insulin resistance, and inflammation through Sirt6.
Accumulating evidences have indicated that aberrant expression of long non-coding RNAs (LncRNAs) is tightly associated with cancer development. Previous studies have reported that lncRNA XIST regulates tumor malignancies in several cancers. However, the underlying mechanism of XIST in prostate cancer remains unclear. In the current study, we found that XIST was down-regulated in prostate cancer specimens and cell lines. Low expression of XIST was correlated with poor prognosis and advanced tumor stage in prostate cancer patients. In gain and loss of function assays, we confirmed that XIST suppressed cellular proliferation and metastasis in prostate cancer both in vitro and in vivo. Furthermore, we found that XIST negatively regulates the expression of miR-23a and subsequently promotes RKIP expression at post-transcriptional level. Consequently, we investigated the correlation between XIST and miR-23a, and identified miR-23a as a direct target of XIST. In addition, over-expression of miR-23a efficiently abrogated the up-regulation of RKIP induced by XIST, suggesting that XIST positively regulates the expression of RKIP by competitively binding to miR-23a. Taken together, our study indicated that lncRNA XIST acts as a tumor suppressor in prostate cancer, and this regulatory effect of XIST will shed new light on epigenetic diagnostics and therapeutics in prostate cancer.
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). As a transcription factor, the Transcript induced in spermiogenesis 40 (Tisp40) has been found to be involved in renal IRI. However, the role of Tisp40 in tubular epithelial cell (TEC) pyroptosis of renal IRI remains unknown. In this study, we investigated effects of Tisp40 on Gasdermin D (GSDMD)-mediated TEC pyroptosis in renal IRI and underlying molecular mechanisms in I/R-induced kidney by hematoxylin and eosin (HE) staining, Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay,immunohistochemistry (IHC), reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated TCMK-1 cells by lactate dehydrogenase (LDH) release assay, CCK-8 assay,enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, immunofluorescence staining,RT-qPCRand western blot analysis in vitro. We found that the levels of Tisp40 and GSDMD-N expression increased gradually, and peaked at 30 min ischemia/24 h reperfusion in vivo and 24 h OGD/R/6 h reoxygenation in vitro, simultaneously, the levels of TEC pyroptosis and renal injury were correspondingly increased. The data of Pearson's correlation analysis showed that the expression of Tisp40 and GSDMD-N was positively correlated. Furthermore, Tisp40 overexpression aggravated TEC pyroptosis rate and increased the expressions of related proteins, including GSDMD-N, NLRP3, caspase-1, IL-1β, and IL-18 in the OGD/R-stimulated TCMK-1 cell line, whereas the opposite occurred in cells treated with small interfeing RNA (siRNA) targeting Tisp40. Tisp40-deficient mice showed attenuated renal IRI and pyroptosis compared with wild-type mice. In addition, Tisp40 knockout remarkably decreased the levels of GSDMD-N, IL-1β, IL-18, NLRP3, and caspase-1 expression, and alleviated renal pyroptosis induced by I/R. Importantly, Tisp40 overexpression significantly increased TECs pyroptosis via p-p65 activation, however, the effects of Tisp40 overexpression were partially blocked by parthenolide (PTL). Collectively, our findings provide insight into the mechanism of how Tisp40 regulated GSDMD-mediated pyroptosis in renal IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.