Rotary tillage is a common farming method because of its ease of operation and low cost in the North China Plain. However, the rotary tillage depth is generally no more than 20 cm, and successive years of rotary tillage harden the root soil layers, which reduces maize’s ability to take root into the deep layer and decreases maize yields. The impact of the different rotary tillage depths and different plow pan thicknesses on maize yields was unclear and needs further study. In this study, a 3-year experiment was conducted, and three rotary tillage depths were designed: 20 cm tillage depth (D20), 25 cm tillage depth (D25), and 30 cm tillage depth (D30). The effects of different rotary tillage depths on soil’s physical and chemical properties, water use efficiency, photosynthetic rate, and maize yields were investigated. The results showed that soil bulk density significantly decreased and field capacity significantly increased in 10–30 cm soil layers by increasing the rotary tillage depths; soil water consumption, photosynthetic rate, and maize yields of D25 significantly increased in comparison to those of D20 and D30; soil bulk density, plow pan thickness, total nitrogen, total phosphorus, and total potassium had an obvious negative correlation with tillage depth and field capacity; the Denitrification–Decomposition (DNDC) model predicted maize yields well; structural equation models (SEM) revealed that rotary tillage depths and soil water consumption played an important role on maize yields; and D25 could increase maize yields by improving maize water use efficiency and photosynthetic rate. The tillage depth of 25 cm is a suitable rotary tillage depth for the increase in maize yields in the North China Plain.
Purpose
Hydraulic conductivity is very low in saline-sodic soil, which decreases water infiltration. For saline-sodic soil, increasing infiltration water has a special meaning. Increasing infiltration water not only increases the water in the soil profile but also decreases the salinity of the soil, thus making it suitable for growing crops. This study aims to examine the effect of sand pipes on soil water and salt distribution through laboratory tests with different depths and diameters of sand pipes.
Design/methodology/approach
The soil water and salt distribution responses to different sand pipe depths and diameters was investigated. Treatments included sand pipes with diameters of 4 cm, 5cm, 6 cm and the same depth of 4 cm; with depths of 2cm, 6 cm and the same diameter of 5 cm, and a control with no sand pipe (with the diameter of 0 cm and the depth of 0 cm).
Findings
The results suggested that the amount of cumulative infiltration water and transport distance of the wetting front could be increased by increasing the depth and diameter of sand pipes. The soil water content in the soil profile decreased under all treatments except for the control, whereas the value of EC increased with increasing distance from the film hole center. Positive relationships were also found among the sand pipe depth, diameter and the zone of low salt content. Furthermore, salt leaching depth increased with sand pipe depth and diameter. Overall, the treatments with and without sand pipes exhibited obvious differences.
Originality/value
The correlation analysis proved that increasing the infiltration area through sand pipes positively affected the amount of infiltration water, wetting scope and salt leaching depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.