Understanding the elastic response on the nanoscale phase boundaries of multiferroics is an essential issue in order to explain their exotic behaviour. Mixed-phase BiFeO3 films, epitaxially grown on LaAlO3 (001) substrates, have been investigated by means of scanning probe microscopy to characterize the elastic and piezoelectric responses in the mixed-phase region of rhombohedral-like monoclinic (MI) and tilted tetragonal-like monoclinic (MII,tilt) phases. Ultrasonic force microscopy reveal that the regions with low/high stiffness values topologically coincide with the MI/MII,tilt phases. X-ray diffraction strain analysis confirms that the MI phase is more compliant than the MII,tilt one. Significantly, the correlation between elastic modulation and piezoresponse across the mixed-phase regions manifests that the flexoelectric effect results in the enhancement of the piezoresponse at the phase boundaries and in the MI regions. This accounts for the giant electromechanical effect in strained mixed-phase BiFeO3 films.
This paper presents a convenient and reliable method to prepare gold nanoparticles (AuNPs) on graphene. Photo-assisted synthesis (PAS) was employed to grow AuNPs in AuCl(4)(-) electrolyte on graphene. The size of AuNPs could be as large as 130 nm. This optical method had a steady growth rate of AuNPs. The distribution of AuNPs was well controlled by focusing the laser for PAS. The minimum diameter of the distribution was approximately 1 μm. Surface-enhanced Raman scattering of graphene due to AuNPs was observed. Electrical fields near AuNPs calculated by the finite-difference time-domain algorithm ensured that the Raman enhancement was attributed to the localized surface plasmons of AuNPs.
We investigate the effects of liquid crystals (LCs) on the power conversion efficiency of dye-sensitized solar cells (DSSCs). The photovoltaic and electrochemical impedance spectra indicate that minute amounts of LC dopant decrease the short-current density of DSSCs because the doped LCs reduce the electrochemical reaction rate between DSSC counter electrode and electrolyte. The doped LCs delay the degradation rates of DSSCs because of the interaction between cyano groups of the doped LCs and organic solvent in the liquid electrolyte. Owing to the molecular interaction, the doped LCs increase the viscosity and stability, thereby inhibiting the evaporation rate of the liquid electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.