Breathomics is a special branch of metabolomics that quantifies volatile organic compounds (VOCs) from collected exhaled breath samples. Understanding how breath molecules are related to diseases, mechanisms and pathways identified from experimental analytical measurements is challenging due to the lack of an organized resource describing breath molecules, related references and biomedical information embedded in the literature. To provide breath VOCs, related references and biomedical information, we aim to organize a database composed of manually curated information and automatically extracted biomedical information. First, VOCs-related disease information was manually organized from 207 literature linked to 99 VOCs and known Medical Subject Headings (MeSH) terms. Then an automated text mining algorithm was used to extract biomedical information from this literature. In the end, the manually curated information and auto-extracted biomedical information was combined to form a breath molecule database—the Human Breathomics Database (HBDB). We first manually curated and organized disease information including MeSH term from 207 literatures associated with 99 VOCs. Then, an automatic pipeline of text mining approach was used to collect 2766 literatures and extract biomedical information from breath researches. We combined curated information with automatically extracted biomedical information to assemble a breath molecule database, the HBDB. The HBDB is a database that includes references, VOCs and diseases associated with human breathomics. Most of these VOCs were detected in human breath samples or exhaled breath condensate samples. So far, the database contains a total of 913 VOCs in relation to human exhaled breath researches reported in 2766 publications. The HBDB is the most comprehensive HBDB of VOCs in human exhaled breath to date. It is a useful and organized resource for researchers and clinicians to identify and further investigate potential biomarkers from the breath of patients. Database URL: https://hbdb.cmdm.tw
Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GCMS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies. The core processing workflow of GCMS consists of blob/peak detection, baseline correction, and blob alignment. GCMS treats GC×GC/TOF-MS data as pictures and clusters the pixels as blobs according to the brightness of each pixel to generate a blob table. GCMS then aligns the blobs of two GC×GC/TOF-MS data sets according to their distance and similarity. The blob distance and similarity are the Euclidean distance of the first and second retention times of two blobs and the Pearson's correlation coefficient of the two mass spectra, respectively. GCMS also directly corrects the raw data baseline. The analytical performance of GCMS was evaluated using GC×GC/TOF-MS data sets of Angelica sinensis compounds acquired under different experimental conditions and of human plasma samples. The results show that GCMS is an easy-to-use tool for detecting peaks and correcting baselines, and GCMS is able to align GC×GC/TOF-MS data sets acquired under different experimental conditions. GCMS is freely accessible at http://gc2ms.web.cmdm.tw .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.