In this paper, a mathematical model was proposed for calculating physico-chemical parameters and simulating the separation process of solutes in free-flow zone electrophoresis (FFZE). Computer software was developed and implemented in a Delphi XE2 environment based on the model, which comprises zone electrophoresis, electrolyte solution, hydrodynamics and diffusion as well as conversion equations. The simulation results reveal that (i) the software is capable of simulating a dynamic process of FFZE properly; (ii) the software can simulate operation parameters (e.g., electric field, flow rate and pH value) for experimental optimization; (iii) the simulator is able to display the final electropherogram of numerous analytes in FFZE; and (iv) the electropherogram of FFZE can be automatically converted to that of capillary zone electrophoresis. In order to verify the rationality and reliability of this software, the relevant experiments were conducted and further compared with the simulations. The comparisons demonstrated the high agreement between the simulations and the experiments as well as those cited from the relevant references. In addition, effective mobility, diffusion coefficient and concentration of solutes can be conveniently gained via the software. The developed mathematical model and designed software have evident significance for the optimization of experimental conditions and basic physico-chemical parameters in FFZE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.