Defects at the bulk grain boundaries and heterojunction interfaces could dictate the power losses of perovskite solar cells (PSCs) during the operation process, which are regarded as major roadblocks towards...
The benefits of excess PbI 2 on perovskite crystal nucleation and growth are countered by the photoinstability of interfacial PbI 2 in perovskite solar cells (PSCs). Here we report a simple chemical polishing strategy to rip PbI 2 crystals off the perovskite surface to decouple these two opposing effects. The chemical polishing results in a favorable perovskite surface exhibiting enhanced luminescence, prolonged carrier lifetimes, suppressed ion migration, and better energy level alignment. These desired benefits translate into increased photovoltages and fill factors, leading to high-performance mesostructured formamidinium lead iodide-based PSCs with a champion efficiency of 24.50%. As the interfacial ion migration paths and photodegradation triggers, dominated by PbI 2 crystals, were eliminated, the hysteresis of the PSCs was suppressed and the device stability under illumination or humidity stress was significantly improved. Moreover, this new surface polishing strategy can be universally applicable to other typical perovskite compositions.
Most chemical vapor deposition methods for transition metal dichalcogenides use an extremely small amount of precursor to render large single-crystal flakes, which usually causes low coverage of the materials on the substrate. In this study, a self-capping vapor-liquid-solid reaction is proposed to fabricate large-grain, continuous MoS
2
films. An intermediate liquid phase-Na
2
Mo
2
O
7
is formed through a eutectic reaction of MoO
3
and NaF, followed by being sulfurized into MoS
2
. The as-formed MoS
2
seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 μm) flakes or full-coverage films (with a record-high average grain size of 450 μm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm
2
V
−1
s
−1
for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 10
8
) across a 1.5 cm × 1.5 cm region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.