Breast cancer brain metastasis (BCBM) is associated with high morbidity and mortality. Patients with breast cancer risk factors associated with rapid development of BCBM could potentially benefit from early brain metastasis screening. We retrospectively reviewed all BCBM patients treated with brain radiotherapy at our institution from 1997 to 2015. Interval time to BCBM was defined as date of pathologic breast cancer diagnosis to date of radiographic evidence of brain metastasis. Patients were stratified by breast cancer molecular subtype and stage at diagnosis. Kaplan Meier analysis was conducted on time to development of BCBM. Breast cancer risk factors were correlated with time to BCBM on Cox proportion hazard analysis. The study cohort comprised 121 BCBM patients, with median interval time to BCBM of 46 months. Times to BCBM for Her2+/2HR+, Her2+, Her2-/HR+, and triple-negative (TNBC) subtypes were 70, 44, 42, and 28 months respectively (p = 0.002). Time to BCBM for stages I, II, III, and IV were 70, 54, 29, and 24 months, respectively (p = 0.000). BCBM patients were further stratified by both molecular subtype (TNBC vs. non-TNBC) and stage (I, II vs. III, IV). Median times to BCBM for non-TNBC/stage I-II, TNBC/stage I-II, non-TNBC stage III-IV, and TNBC/stage III-IV were 68, 47, 29, and 6 months respectively (p = 0.000). Subtype and stage were associated with shorter time to BCBM on multivariate analysis. Subtype and initial stage are independently correlated with decreased time to development of BCBM. Patients with advanced high stage and triple negative breast cancer develop brain metastases significantly earlier.
Aim:The number of breast cancer brain metastases is a prognostic clinical variable in the modified graded prognostic assessment (GPA) Index for breast cancer.Patients & methods:We retrospectively gathered data from 127 breast cancer patients who underwent radiation therapy for brain metastasis. Patients were stratified by both breast GPA and modified breast GPA scores, and survival was determined using the Kaplan–Meier curves and Cox proportional hazards model.Results & Conclusion:The Kaplan–Meier curve for patients under the breast GPA classification were not significant, but were significant under the modified breast GPA classification. The inclusion of number of brain metastases into the modified breast GPA index improved prognosis, thus validating the use of the modified breast GPA in prognosticating patient outcome.
Cholesterol metabolism and transport has been a major focus in cardiovascular disease risk modification over the past several decades. Hydroxymethylglutaryl-CoA reductase inhibitors (statins) have been the most commonly used agents, with the greatest benefit in reducing both the primary and secondary risks of cardiovascular disease. However, heart disease remains the leading cause of death in both men and women in the United States. Further investigation and intervention are required to further reduce the risk for cardiovascular disease and cardiovascular-related deaths. This review will focus on high-density lipoprotein metabolism and transport, looking particularly at cholesteryl ester transfer protein (CETP) inhibitors. While studies of the other CETP inhibitors in its class have not shown a significant improvement in the prevention of primary or secondary cardiovascular risk, anacetrapib, the fourth and latest of the CETP inhibitors to be investigated, may be more promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.