Optimized TiO2/CuxO/C nanocomposites derived from bi-MOF NH2-MIL-125(Ti/Cu) with in situ formed p–n heterojunctions exhibited superior photocatalytic HER performance without noble metals.
To fully exploit van der Waals materials and their vertically stacked heterostructures, new mass-scalable production routes which are low cost but preserve the high electronic and optical quality of the single crystals are required. Here, we demonstrate an approach to realise a variety of functional heterostructures based on van der Waals nanocrystal films produced through the mechanical abrasion of bulk powders. We find significant performance enhancements in abraded heterostructures compared to those fabricated through inkjet printing of nanocrystal dispersions. To highlight the simplicity, applicability and scalability of the device fabrication, we demonstrate a multitude of different functional heterostructures such as resistors, capacitors and photovoltaics. We also demonstrate the creation of energy harvesting devices, such as large area catalytically active coatings for the hydrogen evolution reaction and enhanced triboelectric nanogenerator performance in multilayer films. The ease of device production makes this a promising technological route for up-scalable films and heterostructures.
This study presents a new ultrathin SiC structure prepared by a catalyst free carbothermal method and post-sonication process. We have found that merging ultra-light 3D graphene foam and SiO together at high temperature leads to the formation of a complex SiC structure consisting of 3D SiC foam covered with traditional 1D nanowires. Upon breaking off, the 3D SiC was confirmed to be made from 2D nanosheets. The resulting novel 2D SiC nanosheets/nanoflakes were thoroughly investigated by using optical microscope, SEM, EDS, TEM, STEM, AFM, and Raman, which verified the highly crystallised structure feature. AFM results revealed an average thickness of 2-3 nm and average size of 2 μm for the flakes. This new SiC structure could not only actualise SiC usage for nano-electronic devices but is also expected to open new applications as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.