Photoluminescent lanthanide-organic frameworks (Ln-MOFs) were printed onto plastic and paper foils with a conventional inkjet printer. Ln-MOF inks were used to reproduce color images that can only be observed under UV light irradiation. This approach opens a new window for exploring Ln-MOF materials in technological applications, such as optical devices (e.g., lab-on-a-chip), as proof of authenticity for official documents.
To fully exploit van der Waals materials and their vertically stacked heterostructures, new mass-scalable production routes which are low cost but preserve the high electronic and optical quality of the single crystals are required. Here, we demonstrate an approach to realise a variety of functional heterostructures based on van der Waals nanocrystal films produced through the mechanical abrasion of bulk powders. We find significant performance enhancements in abraded heterostructures compared to those fabricated through inkjet printing of nanocrystal dispersions. To highlight the simplicity, applicability and scalability of the device fabrication, we demonstrate a multitude of different functional heterostructures such as resistors, capacitors and photovoltaics. We also demonstrate the creation of energy harvesting devices, such as large area catalytically active coatings for the hydrogen evolution reaction and enhanced triboelectric nanogenerator performance in multilayer films. The ease of device production makes this a promising technological route for up-scalable films and heterostructures.
This article reports the effects of gamma radiation on the structural, optical and magnetic properties of monolayer tungsten disulfide (WS2) grown by a scalable van der Waals epitaxial (VdWE) process on a SiO2 coated Si substrate.
We demonstrate air-stable copper-doped nanostructured borophosphate samples, which were prepared by a facile, low cost, and green synthesis method. The thermal annealing, in a reducing hydrogen atmosphere, enables the formation of metallic copper nanostructures, which was confirmed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and optical absorption. The optical spectra show a main intense surface plasmon resonance (SPR) band centered at 579 nm. The shapes of the nanostructures, morphology, and thickness of the copper nanostructures coating are chosen to be suitable for SERS applications. These samples exhibited very high SERS enhancement factors (EF), depending on thermal annealing time, with excellent reproducibility. The estimated EFs have been found in the range between 10 7 and 10 8 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.