Analysis of microbial mixtures in complex systems, such as clinical samples, using mass spectrometry can be challenging because the specimens may contain mixtures of several pathogens or both pathogens and nonpathogens. We have successfully applied capillary electrophoresis-selective MS/MS of unique peptide marker ions to the identification of common pathogens in clinical diagnosis. We searched the CE-MS/MS spectra acquired from the proteolytic digests of pure bacterial cell extracts against protein databases. The identified peptides that matched a protein associated with a particular pathogen were selected as marker ions to identify that bacterium in clinical specimens. Thirty-four clinical specimens, obtained from pus, wound, sputum, and urine samples, were analyzed using both biochemical and selective MS/MS methods. The bacteria in these clinical samples were cultivated directly, without prior isolation of a pure colony, before performing the selective MS/MS analyses. The bacteria analyzed included both Gram-positive and -negative strains. The match with respect to the pathogens identified was good between the biochemical and the selective MS/MS methods; the matching rate was 91%. The rate was as high as 97% when not considering two specimens for which the bacteria were not grown successfully. Two of the specimens that we identified using the biochemical method as containing two bacterial species were confirmed also through selective tandem MS analysis.
Phosphopeptides have been isolated and concentrated by use of polyethyleneimine (PEI)-modified magnetic nanoparticles as an extremely specific affinity probe. The particles specifically captured phosphopeptides from a tryptic digest of a protein mixture that contained 0.07% (mole/mole) phosphoproteins, which is the highest specificity obtained to date. The time required for enrichment of the phosphopeptides was 1 min only. PEI-modified magnetic nanoparticles carry positive charges over a wide range of pH-between 3 and 11. This feature means the particles are effectively dispersed in solution during phosphopeptide capture. Mass spectrometric analysis revealed the very high efficiency of enrichment of phosphopeptides that contain both single and multiply-phosphorylated sites. The detection limit in the analysis of phosphopeptides obtained from both bovine α-casein and β-casein by matrix-assisted laser desorption/ionization mass spectrometry was 5 fmol. This approach was also used to enrich the phosphopeptides in a protein digest obtained from non-fat milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.