Being declared a global emergency, the COVID-19 pandemic has taken many lives, threatened livelihoods and businesses around the world. The energy industry, in particular, has experienced tremendous pressure resulting from the pandemic. In response to such a challenge, the development of sustainable resources and renewable energy infrastructure has demonstrated its potential as a promising and effective strategy. To sufficiently address the effect of COVID-19 on renewable energy development strategies, short-term policy priorities should be identified, while mid-term and long-term action plans should be formulated in achieving the well-defined renewable energy targets and progress towards a more sustainable energy future. In this review, opportunities, challenges, and significant impacts of the COVID-19 pandemic on current and future sustainable energy strategies were analyzed in detail; while drawing from experiences in identifying reasonable behaviors, orientating appropriate actions, and policy implications on the sustainable energy trajectory were also mentioned. Indeed, the question is that whether the COVID-19 pandemic will kill us or provide us with a precious lesson on future sustainable energy development.
a b s t r a c tThis paper begins with a review on the current techniques used for the treatment and recovery of waste oil, which is then followed by an extensive review of the recent achievements in the sustainable development and utilization of pyrolysis techniques in energy recovery from waste oils. The advantages and limitations shown by the use of pyrolysis technique and other current techniques were discussed along with the future research that can be performed on the pyrolysis of waste oil. It was revealed that the current techniques (transesterification, hydrotreating, gasification, solvent extraction, and membrane technology) are yet to be sustainable or completely feasible for waste oil treatment and recovery. It was established that pyrolysis techniques offer a number of advantages over other existing techniques in recovering both the energetic and chemical value of waste oil by generating potentially useful pyrolysis products suitable for future reuse. In particular, microwave pyrolysis shows a distinct advantage in providing a rapid and energy-efficient heating compared to conventional pyrolysis techniques, and thus facilitating increased production rates. It was found that microwave pyrolysis of waste oil showed good performance with respect to product yield, reaction time, energy consumption, and product quality, and thus showing exceptional promise as a sustainable means for energy recovery from waste oils. Nevertheless, it was revealed that some important characteristics of the pyrolysis process have yet to be fully investigated. It was thus concluded that more studies are needed to extend existing understanding in the optimal reaction and process parameters in order to develop the pyrolysis technology to be a sustainable and commercially viable route for energy recovery from problematic waste oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.