This paper presents a spatial-related traffic sign inspection process for sign type, position, and placement using mobile laser scanning (MLS) data acquired by a RIEGL VMX-450 system and presents its potential for traffic sign inventory applications. First, the paper describes an algorithm for traffic sign detection in complicated road scenes based on the retroreflectivity properties of traffic signs in MLS point clouds. Then, a point cloud-to-image registration process is proposed to project the traffic sign point clouds onto a 2-D image plane. Third, based on the extracted traffic sign points, we propose a traffic sign position and placement inspection process by creating geospatial relations between the traffic signs and road environment. For further inventory applications, we acquire several spatial-related inventory measurements. Finally, a traffic sign recognition process is conducted to assign sign type. With the acquired sign type, position, and placement data, a spatial-associated sign network is built. Experimental results indicate satisfactory performance of the proposed detection, recognition, position, and placement inspection algorithms. The experimental results also prove the potential of MLS data for automatic traffic sign inventory applications.
Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the traditional stormwater systems these communities rely on. Automated real-time control (RTC) of these systems can improve performance, and creating control policies for smart stormwater systems is an active area of study. This research explores reinforcement learning (RL) to create control policies to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal boundary and two retention ponds with controllable valves. RL's performance is compared to the passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC). RL learns to proactively manage pond levels using current and forecast conditions and reduced flooding by 32% over the passive system. Compared to the MPC approach using a physics-based model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC, with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can effectively control a simple system and offers a computationally efficient method that could scale to RTC of more complex stormwater systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.