Effective shared autonomy requires a clear understanding of driver's behavior, which is governed by multiple psychophysiological and environmental variables. Disentangling this intricate web of interactions requires understanding the driver's state and behaviors in different real-world scenarios, longitudinally. Naturalistic Driving Studies (NDS) have shown to be an effective approach to understanding the driver's state and behavior in real-world scenarios. However, due to the lack of technological and computing capabilities, former NDS only focused on vision-based approaches, ignoring important psychophysiological factors such as cognition and emotion. The main objective of this paper is to introduce HARMONY, a human-centered multimodal naturalistic driving study, where driver's behaviors and states are monitored through (1) in-cabin and outside video streams (2) physiological signals including driver's heart rate and hand acceleration (IMU data), (3) ambient noise, light, and the vehicle's GPS location, and (4) music logs, including song features such as tempo. HARMONY is the first study that collects long-term naturalistic facial, physiological, and environmental data simultaneously. This paper summarizes HARMONY's goals, framework design, data collection and analysis, and the on-going and future research efforts. Through a presented case study, we first demonstrate the importance of longitudinal driver state sensing through using Kernel Density Estimation Methods. Second, we leverage the application of Bayesian Change Point detection methods to demonstrate how we can identify driver behaviors and responses to the environmental conditions by fusing psychophysiological information with features extracted from video streams.INDEX TERMS Naturalistic driving study, physiological sensing,driver state detection, shared-autonomy, contextual awareness, human-in-the-loop systems
Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the traditional stormwater systems these communities rely on. Automated real-time control (RTC) of these systems can improve performance, and creating control policies for smart stormwater systems is an active area of study. This research explores reinforcement learning (RL) to create control policies to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal boundary and two retention ponds with controllable valves. RL's performance is compared to the passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC). RL learns to proactively manage pond levels using current and forecast conditions and reduced flooding by 32% over the passive system. Compared to the MPC approach using a physics-based model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC, with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can effectively control a simple system and offers a computationally efficient method that could scale to RTC of more complex stormwater systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.