BackgroundSocial anxiety is highly prevalent among college students. Current methodologies for detecting symptoms are based on client self-report in traditional clinical settings. Self-report is subject to recall bias, while visiting a clinic requires a high level of motivation. Assessment methods that use passively collected data hold promise for detecting social anxiety symptoms and supplementing self-report measures. Continuously collected location data may provide a fine-grained and ecologically valid way to assess social anxiety in situ.ObjectiveThe objective of our study was to examine the feasibility of leveraging noninvasive mobile sensing technology to passively assess college students’ social anxiety levels. Specifically, we explored the different relationships between mobility and social anxiety to build a predictive model that assessed social anxiety from passively generated Global Positioning System (GPS) data.MethodsWe recruited 228 undergraduate participants from a Southeast American university. Social anxiety symptoms were assessed using self-report instruments at a baseline laboratory session. An app installed on participants’ personal mobile phones passively sensed data from the GPS sensor for 2 weeks. The proposed framework supports longitudinal, dynamic tracking of college students to evaluate the relationship between their social anxiety and movement patterns in the college campus environment. We first extracted the following mobility features: (1) cumulative staying time at each different location, (2) the distribution of visits over time, (3) the entropy of locations, and (4) the frequency of transitions between locations. Next, we studied the correlation between these features and participants’ social anxiety scores to enhance the understanding of how students’ social anxiety levels are associated with their mobility. Finally, we used a neural network-based prediction method to predict social anxiety symptoms from the extracted daily mobility features.ResultsSeveral mobility features correlated with social anxiety levels. Location entropy was negatively associated with social anxiety (during weekdays, r=−0.67; and during weekends, r=−0.51). More (vs less) socially anxious students were found to avoid public areas and engage in less leisure activities during evenings and weekends, choosing instead to spend more time at home after school (4 pm-12 am). Our prediction method based on extracted mobility features from GPS trajectories successfully classified participants as high or low socially anxious with an accuracy of 85% and predicted their social anxiety score (on a scale of 0-80) with a root-mean-square error of 7.06.ConclusionsResults indicate that extracting and analyzing mobility features may help to reveal how social anxiety symptoms manifest in the daily lives of college students. Given the ubiquity of mobile phones in our society, understanding how to leverage passively sensed data has strong potential to address the growing needs for mental health monitoring and treatment.
Effective shared autonomy requires a clear understanding of driver's behavior, which is governed by multiple psychophysiological and environmental variables. Disentangling this intricate web of interactions requires understanding the driver's state and behaviors in different real-world scenarios, longitudinally. Naturalistic Driving Studies (NDS) have shown to be an effective approach to understanding the driver's state and behavior in real-world scenarios. However, due to the lack of technological and computing capabilities, former NDS only focused on vision-based approaches, ignoring important psychophysiological factors such as cognition and emotion. The main objective of this paper is to introduce HARMONY, a human-centered multimodal naturalistic driving study, where driver's behaviors and states are monitored through (1) in-cabin and outside video streams (2) physiological signals including driver's heart rate and hand acceleration (IMU data), (3) ambient noise, light, and the vehicle's GPS location, and (4) music logs, including song features such as tempo. HARMONY is the first study that collects long-term naturalistic facial, physiological, and environmental data simultaneously. This paper summarizes HARMONY's goals, framework design, data collection and analysis, and the on-going and future research efforts. Through a presented case study, we first demonstrate the importance of longitudinal driver state sensing through using Kernel Density Estimation Methods. Second, we leverage the application of Bayesian Change Point detection methods to demonstrate how we can identify driver behaviors and responses to the environmental conditions by fusing psychophysiological information with features extracted from video streams.INDEX TERMS Naturalistic driving study, physiological sensing,driver state detection, shared-autonomy, contextual awareness, human-in-the-loop systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.