Background: Cancer cells have to take metabolic transformation in tumor progression when facing need of increased energy and adequate vascularization. However, molecular mechanism is not fully known. In this study, we showed that expression of carnitine palmitoyltransferase 1C (Cpt1c), as a member of the gate-keeper enzymes , which transferring long-chain fatty acids into mitochondria to further oxidation, which is regulated by AMPK promotes papillary thyroid carcinomas cells survival under metabolic stress conditions.Methods: Firstly, we used qRT-PCR to detect expression of Cpt1c in papillary thyroid carcinomas tissues compared with paired normal tissues. Secondly, to evaluate whether Cpt1c is induced under metabolic stress, models of hypoxia (0.2% oxygen) and glucose deprivation for cultured papillary thyroid carcinomas cells were established. Lastly, KTC-1 cells were treated with AICAR (as an agonist of AMPK) and Compound C (as an inhibitor of AMPK) to investigate the correlation of AMPK activity with Cpt1c expression under metabolic stress.Results: Cpt1c is higher in papillary thyroid carcinomas tissues compared with paired normal tissues. Furthermore, Cpt1c up-regulation promotes cancer cell growth and metastasis. In addition, the results showed that Cpt1c expression is induced by metabolic stress, including hypoxia and low glucose treatment. Consistently, Cpt1c can protect cells from cancer cells death caused by hypoxia and low glucose. Lastly, Cpt1c expression is regulated by AMPK activity.Conclusion: Here we describe that induction of Cpt1c expression facing metabolic stress in papillary thyroid carcinomas is at least partly regulated by AMPK activity and ultimately contribute to development and progression of papillary thyroid carcinomas.
The role of Sun2 has been described by previous studies in various types of cancers, including breast cancer and lung cancer. However, its role and potential molecular mechanism in the progression of prostate cancer have not been fully elucidated. In the present study, we found that Sun2 expression was reduced in prostate cancer tissues compared with paired normal tissues, and that low expression of Sun2 was significantly correlated with Higher Gleason scores, postoperative T stage (pT), Lymph nodal invasion and Clinical pathological stages. In addition, reduced Sun2 Expression predicts poor survival of prostate cancer patients and could serve as an independent predictor of prostate cancer patients overall survival (OS).Furthermore, Sun2 overexpression inhibits the prostate cancer cells growth, and Sun2 knockdown promotes the prostate cancer cells growth both in vitro and vivo. Mechanical silencing of , Sun2 promoted fatty acid oxidation (FAO) in prostate cancer, prostate cancer cells growth promoted by Sun2 silencing could be reversed by the FAO inhibitor Etomoxir. Additionally, we also showed that serum amyloid A1 (SAA1) play a vital role in FAO, ATP and cell growth promoted by Sun2 loss in prostate cancer. These results suggest that Loss of Sun2 promoted the prostate cancer progression by regulating FAO.
The present study aimed to identify potential genes associated with prostate cancer (PCa) recurrence following radical prostatectomy (RP) in order to improve the prediction of the prognosis of patients with PCa. The GSE25136 microarray dataset, including 39 recurrent and 40 non-recurrent PCa samples, was downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) were identified using limma packages, and the pheatmap package was used to present the DEGs screened using a hierarchical cluster analysis. Furthermore, gene ontology functional enrichment analysis was used to predict the potential functions of the DEGs. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to analyze pathway enrichment of DEGs in the regulatory network. Lastly, a protein-protein interaction (PPI) network of the DEGs was constructed using Cytoscape software to understand the interactions between these DEGs. A total of 708 DEGs were identified in the recurrent and non-recurrent PCa samples. Functional annotation revealed that these DEGs were primarily involved in cell adhesion, negative regulation of growth, and the cyclic adenosine monophosphate and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, five key genes, including cluster of differentiation 22, insulin-like growth factor-1, inhibin β A subunit, MAPK kinase 5 and receptor tyrosine kinase like orphan receptor 1, were identified through PPI network analysis. The results of the present study have provided novel ideas for predicting the prognosis of patients with PCa following RP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.