Recent years have witnessed remarkable success of deep learning methods in quality enhancement for compressed video. To better explore temporal information, existing methods usually estimate optical flow for temporal motion compensation. However, since compressed video could be seriously distorted by various compression artifacts, the estimated optical flow tends to be inaccurate and unreliable, thereby resulting in ineffective quality enhancement. In addition, optical flow estimation for consecutive frames is generally conducted in a pairwise manner, which is computational expensive and inefficient. In this paper, we propose a fast yet effective method for compressed video quality enhancement by incorporating a novel Spatio-Temporal Deformable Fusion (STDF) scheme to aggregate temporal information. Specifically, the proposed STDF takes a target frame along with its neighboring reference frames as input to jointly predict an offset field to deform the spatio-temporal sampling positions of convolution. As a result, complementary information from both target and reference frames can be fused within a single Spatio-Temporal Deformable Convolution (STDC) operation. Extensive experiments show that our method achieves the state-of-the-art performance of compressed video quality enhancement in terms of both accuracy and efficiency.
Ferroelectric field effect transistors (FeFETs) are being actively investigated with the potential for in-memory computing (IMC) over other non-volatile memories (NVMs). Content Addressable Memories (CAMs) are a form of IMC that performs parallel searches for matched entries over a memory array for a given input query. CAMs are widely used for data-centric applications that involve pattern matching and search functionality. To accommodate the ever expanding data, it is attractive to resort to analog CAM for memory density improvement. However, the digital CAM design nowadays based on standard CMOS or emerging nonvolatile memories (e.g., resistive storage devices) is already challenging due to area, power, and cost penalties. Thus, it can be extremely expensive to achieve analog CAM with those technologies due to added cell components. As such, we propose, for the first time, a universal compact FeFET based CAM design, FeCAM, with search and storage functionality enabled in digital and analog domain simultaneously. By exploiting the multi-level-cell (MLC) states of FeFET, FeCAM can store and search inputs in either digital or analog domain. We perform a device-circuit co-design of the proposed FeCAM and validate its functionality and performance using an experimentally calibrated FeFET model. Circuit level simulation results demonstrate that FeCAM can either store continuous matching ranges or encode 3-bit data in a single CAM cell. When compared with the existing digital CMOS based CAM approaches, FeCAM is found to improve both memory density by 22.4× and energy saving by 8.6/3.2× for analog/digital modes, respectively. In the CAM-related application, our evaluations show that FeCAM can achieve 60.5×/23.1× saving in area/search energy compared with conventional CMOS based CAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.