Pancreatic adenocarcinoma (PAAD), one of the most prevailing malignant tumors in digestive system, is identified as one of the main culprits of cancer-associated mortality. Despite long intergenic non-protein coding RNA 1232 (LINC01232) is found to be upregulated in TCGA PAAD tissues and associated with poor prognosis, the potential of LINC01232 in PAAD progression still needs more explorations. In this study, LINC01232 was chosen to be the research object in PAAD cellular processes. Functionally, loss-of function assays were carried out and the experimental results indicated that suppression of LINC01232 hindered the deterioration of PAAD by affecting cell proliferation and migration. Furthermore, relationship between LINC01232 and its nearby gene transmembrane 9 superfamily member 2 (TM9SF2) was investigated. The same expression pattern of TM9SF2 in TCGA PAAD samples was observed. It was found that upregulation of LINC01232 could be a crucial factor for the dysregulation of TM9SF2. Mechanistically, LINC01232 recruited EIF4A3 to boost TM9SF2 mRNA stability. Besides, our findings demonstrated that the transcriptional activation of LINC01232 and TM9SF2 was mediated by SP1. Therefore, we concluded that LINC01232 executed carcinogenic properties in PAAD progression via regulation of TM9SF2. In conclusion, this study was the first to unveil the role and molecular mechanism of LINC01232, suggesting LINC01232 as a promising molecular target for pancreatic cancer treatment.
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a critical role in Alzheimer's disease (AD) pathogenesis. This study aimed to investigate the relationship between microRNA-149 (miR-149) and BACE1, and evaluate the clinical significance and biological function of miR-149 in AD progression. Bioinformatics analysis and a luciferase reporter assay were used to confirm the interaction between miR-149 and BACE1. Expression of miR-149 and BACE1 was estimated using quantitative real-time PCR. The clinical significance of miR-149 in AD diagnosis and severity determination was evaluated using ROC analysis. The effect of miR-149 on Aβ accumulation and neuronal viability was analyzed in Aβ-treated SH-SY5Y cells. miR-149 was found directly binding the 3'-UTR of BACE1 and was negatively correlated with BACE1 in AD patients and cell model. Serum miR-149 expression was downregulated in AD patients and served as a potential diagnostic biomarker. The overexpression of miR-149 in Aβ-treated SH-SY5Y cells resulted in inhibited Aβ accumulation and enhanced neuronal viability. This study demonstrated that serum miR-149 is decreased in AD patients and serves as a candidate diagnostic biomarker, and that the overexpression of miR-149 may suppress Aβ accumulation and promote neuronal viability by targeting BACE1 in AD model cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.