The benefits of concurrent newborn hearing and genetic screening have not been statistically proven due to limited sample sizes and outcome data. To fill this gap, we analyzed outcomes of newborns with genetic screening results. Methods: Newborns in China were screened for 20 hearingloss-related genetic variants from 2012 to 2017. Genetic results were categorized as positive, at-risk, inconclusive, or negative. Hearing screening results, risk factors, and up-to-date hearing status were followed up via phone interviews. Results: Following up 12,778 of 1.2 million genetically screened newborns revealed a higher rate of hearing loss by three months of age among referrals from the initial hearing screening (60% vs. 5.0%, P < 0.001) and a lower rate of lost-to-follow-up/documentation (5% vs. 22%, P < 0.001) in the positive group than in the inconclusive group. Importantly, genetic screening detected 13% more hearing-impaired infants than hearing screening alone and identified 2,638 (0.23% of total) newborns predisposed to preventable ototoxicity undetectable by hearing screening. Conclusion: Incorporating genetic screening improves the effectiveness of newborn hearing screening programs by elucidating etiologies, discerning high-risk subgroups for vigilant management, identifying additional children who may benefit from early intervention, and informing at-risk newborns and their maternal relatives of increased susceptibility to ototoxicity.
Purpose: Concurrent newborn hearing and genetic screening has been reported, but its benefits have not been statistically proven due to limited sample sizes and outcome data. To fill this gap, we analyzed outcomes of a large number of newborns with genetic screening results.Methods: Newborns in China were screened for 20 hearing-loss-related genetic variants from 2012-2017. Genetic results were categorized as positive, at-risk, inconclusive, or negative. Hearing screening results, risk factors, and up-to-date hearing status were followed-up via phone interviews. Results:We completed genetic screening on one million newborns and followed up 12,778.We found that a positive genetic result significantly indicated a higher positive predictive value of the initial hearing screening (60% vs. 5.0%, P<0.001) and a lower rate of loss-to-follow-up (5% vs. 22%, P<0.001) than an inconclusive one. Importantly, 42% of subjects in the positive group with reported or presymptomatic hearing loss were " missed" by conventional hearing screening. Furthermore, genetic screening identified 0.23% of subjects predisposed to preventable ototoxicity. Conclusion:Our results demonstrate that limited genetic screening identified additional cases, reduced loss-to-follow-up, and informed families of ototoxicity risks, providing convincing evidence to support integrating genetic screening into universal newborn hearing screening programs.
Objectives: Genetic screening can benefit early detection and intervention for hearing loss. The frequency of common deafness-associated variants in general populations is highly important for genetic screening and genetic counseling tailored to different ethnic backgrounds. We aimed to analyze the frequency of common deafness-associated variants in a large population-based Chinese newborn cohort and to explore the population-specific features in diverse populations worldwide. Design: This population-based cohort study analyzed the frequency of common deafness-associated variants in 3,555,336 newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Participants were newborn infants born between January 2007 and September 2020. Limited genetic screening for 20 variants in 4 common deafness-associated genes and newborn hearing screening were offered concurrently to all newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Sequence information of 141,456 individuals was also analyzed from seven ethnic populations from the Genome Aggregation Database for 20 common deafness-related variants. Statistical analysis was performed using R. Results: A total of 3,555,326 Chinese neonates completed the Newborn Concurrent Hearing and Genetic Screening were included for analysis. We reported the distinct landscape of common deafness-associated variants in this large population-based cohort. We found that the carrier frequencies of GJB2, SLC26A4, GJB3, and MT-RNR were 2.53%, 2.05%, 0.37%, and 0.25%, respectively. Furthermore, GJB2 c.235delC was the most common variant with an allele frequency of 0.99% in the Chinese newborn population. We also demonstrated nine East-Asia-enriched variants, one Ashkenazi Jewish-enriched variant, and one European/American-enriched variant for hearing loss. Conclusions: We showed the distinct landscape of common deafness-associated variants in the Chinese newborn population and provided insights into population-specific features in diverse populations. These data can serve as a powerful resource for otolaryngologists and clinical geneticists to inform population-adjusted genetic screening programs for hearing loss.
Supplemental Digital Content is available in the text
Background: Propionic acidemia (PA)(OMIM#606054) is an inborn error of branched-chain amino acid metabolism, caused by defects in the propionyl-CoA carboxylase (PCC) enzyme which encoded by the PCCA and PCCB genes. Case presentation: Here we report a Chinese neonate diagnosed with suspected PA based on the clinical symptoms, gas chromatography-mass spectrometry (GC/MS), and brain imaging tests. Targeted next-generation sequencing (NGS) was performed on the proband. We detected only one heterozygous recurrent nonsense variant (c.937C > T, p.Arg313Ter) in the PCCA gene. When we manually checked the binary alignment map (BAM) diagram of PCCA gene, we found a heterozygous deletion chr13:100915039-100915132delinsAA (c.773_819 + 47delinsAA) (GRCh37.p13) inside the exon 10 in the PCCA gene. The results were validated by Sanger sequencing and qPCR method in the family: the variant (c.937C > T, p.Arg313Ter) was in the maternal allele, and the delins was in the paternal allele. When the mother was pregnant again, prenatal diagnosis was carried out through amniocentesis at 18 weeks gestation, the fetus carried neither of the two mutations. After birth, newborn screening was undertaken, the result was negative. Conclusions: We identified a recurrent c.937C > T and a novel c.773_819 + 47delinsAA mutations in the PCCA gene, which may be the genetic cause of the phenotype of this patient. Our findings expanded the spectrum of causative genotype-phenotype of the PCCA gene. For the cases, the NGS results revealed only a heterozygous mutation in autosomal recessive disease when the gene is associated with phenotypes, it is necessary to manually check the BAM diagram to improve the detection rate. Targeted NGS is an effective technique to detect the various genetic lesions responsible for the PA in one step. Genetic testing is essential for genetic counselling and prenatal diagnosis in the family to avoid birth defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.