Sunitinib resistance is a major challenge for advanced renal cell carcinoma (RCC). Understanding the underlying mechanisms and developing effective strategies against sunitinib resistance are highly desired in the clinic. Here we identified an lncRNA, named lncARSR (lncRNA Activated in RCC with Sunitinib Resistance), which correlated with clinically poor sunitinib response. lncARSR promoted sunitinib resistance via competitively binding miR-34/miR-449 to facilitate AXL and c-MET expression in RCC cells. Furthermore, bioactive lncARSR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating sunitinib resistance. Treatment of sunitinib-resistant RCC with locked nucleic acids targeting lncARSR or an AXL/c-MET inhibitor restored sunitinib response. Therefore, lncARSR may serve as a predictor and a potential therapeutic target for sunitinib resistance.
Phosphotyrosine phosphatases are critical negative or positive regulators in the intracellular signalling pathways that result in growth-factor-specific cell responses such as mitosis, differentiation, migration, survival, transformation or death. The SH2-domain-containing phosphotyrosine phosphatase SHP-2 is a positive signal transducer for several receptor tyrosine kinases (RTKs) and cytokine receptors. To investigate its mechanism of action we purified a tyrosine-phosphorylated glycoprotein which in different cell types associates tightly with SHP-2 and appears to serve as its substrate. Peptide sequencing in conjunction with complementary DNA cloning revealed a new gene family of at least fifteen members designated signal-regulatory proteins (SIRPs). They consist of two subtypes distinguished by the presence or absence of a cytoplasmic SHP-2-binding domain. The transmembrane polypeptide SIRP alpha1 is a substrate of activated RTKs and in its tyrosine-phosphorylated form binds SHP-2 through SH2 interactions and acts as its substrate. It also binds SHP-1 and Grb2 in vitro and has negative regulatory effects on cellular responses induced by growth factors, oncogenes or insulin. Our findings indicate that proteins belonging to the SIRP family generally regulate signals defining different physiological and pathological processes.
Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes were associated with distinct clinical features including age, sex, severity, and disease stages of COVID-19. SARS-CoV-2 RNAs were found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within viral positive cells. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and developing effective therapeutic strategies for COVID-19.
The communication between tumor-derived elements and stroma in the metastatic niche has a critical role in facilitating cancer metastasis. Yet, the mechanisms tumor cells use to control metastatic niche formation are not fully understood. Here we report that in the lung metastatic niche, high-metastatic hepatocellular carcinoma (HCC) cells exhibit a greater capacity to convert normal fibroblasts to cancer-associated fibroblasts (CAFs) than low-metastatic HCC cells. We show high-metastatic HCC cells secrete exosomal miR-1247-3p that directly targets B4GALT3, leading to activation of β1-integrin–NF-κB signaling in fibroblasts. Activated CAFs further promote cancer progression by secreting pro-inflammatory cytokines, including IL-6 and IL-8. Clinical data show high serum exosomal miR-1247-3p levels correlate with lung metastasis in HCC patients. These results demonstrate intercellular crosstalk between tumor cells and fibroblasts is mediated by tumor-derived exosomes that control lung metastasis of HCC, providing potential targets for prevention and treatment of cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.