Feralization of crop plants has aroused an increasing interest in recent years, not only for the reduced yield and quality of crop production caused by feral plants but also for the rapid evolution of novel traits that facilitate the evolution and persistence of weedy forms. Weedy rice (Oryza sativa f. spontanea) is a conspecific weed of cultivated rice, with separate and independent origins. The weedy rice distributed in eastern and northeastern China did not diverge from their cultivated ancestors by reverting to the pre-domestication trait of seed dormancy during feralization. Instead, they developed a temperature-sensing mechanism to control the timing of seed germination. Subsequent divergence in the minimum critical temperature for germination has been detected between northeastern and eastern populations. An integrative analysis was conducted using combinations of phenotypic, genomic and transcriptomic data to investigate the genetic mechanism underlying local adaptation and feralization. A dozen genes were identified, which showed extreme allele frequency differences between eastern and northeastern populations, and high correlations between allele-specific gene expression and feral phenotypes. Trancing the origin of potential adaptive alleles based on genomic sequences revealed the presence of most selected alleles in wild and cultivated rice genomes, indicating that weedy rice drew upon pre-existing, “conditionally neutral” alleles to respond to the feral selection regimes. The cryptic phenotype was exposed by activating formerly silent alleles to facilitate the transition from cultivation to wild existence, promoting the evolution and persistence of weedy forms.
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Substantial genetic variation is found in weedy rice (Oryza sativa f. spontanea Roshev.) populations from different rice‐planting regions with the change of farming styles. To determine the association of such genetic variation with rice farming changes is critical for understanding the adaptive evolution of weedy rice. We studied weedy‐rice specific novel single nucleotide polymorphisms (SNPs) by genome‐wide comparison between DNA sequences of weedy and cultivated rice, in addition to polymerase chain reaction fingerprinting at 22 selected novel SNP loci in weedy rice populations. A great number of novel SNPs were identified across the weedy rice genome. High frequencies of the novel SNPs were determined at the 22 selected loci, although with considerable variation among weedy rice populations in different rice‐planting regions. The highest frequency (∼57%) of novel SNPs was identified in weedy rice populations from Jiangsu that experienced the most dramatic changes in rice farming styles, including the shift from transplanting to direct seeding, and from indica to japonica varieties. The lowest frequency (∼29%) was detected in weedy rice populations from Northeast China, where rice farming has undergone relatively less change. The association between frequencies of novel SNPs in weedy rice populations and the extent of changes in rice farming styles suggests the critical role of adaptive mutation and accumulation of the mutation influenced by human activities in the rapid evolution of weedy rice.
Alternanthera philoxeroides is a perennial amphibious weed native to South America but has now spread to diverse parts of the world. A. philoxeroides reproduces both sexually and asexually in its native range, but propagates solely through vegetative means in its introduced range. Traits associated with sexual reproduction become degraded for sexual dysfunction, with flowers possessing either pistillate stamens or male-sterile anthers. Degradations of sexual characters for loss of sexuality commonly take place in clonal plants. The underlying molecular-genetic processes remain largely unknown. We compared the gene expression profiles of abnormal stamens with that of normal stamens by RNA-Seq analysis, and identified a large number of differentially expressed genes between abnormal and normal stamens. In accordance with flower morphology, the expression of B-class MADS-box genes (ApAP3, ApTM6, and ApPI) was markedly reduced in pistillate stamens. However, most of the genes involved in meiosis were expressed normally in stamens with male-sterile anthers. In addition to verifying the expression patterns of genes previously known to be related to stamen and pollen grain development, we also identified previously unknown molecular phenotypes associated with sexual dysfunction in A. philoxeroides, that is helpful for dissecting the molecular mechanisms underpinning various male-sterile phenotypes and the molecular processes underlying the transition from sexuality to asexuality in clonal plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.