Objective To investigate the in vitro cytocompatibility and osteogenic potential of an experimental calcium silicate-based cement and the inflammatory response in human periodontal ligament stem cells (hPDLSCs). Methods Cellular responses, osteogenic-related gene expression, and the production of inflammatory cytokines including interleukin (IL)-6 and IL-8 were studied in hPDLSCs exposed to the experimental root canal-filling material C-Root, the commercial tricalcium silicate-based material BioRoot RCS, and the epoxy resin-based material AH Plus. Differences were analyzed using one-way ANOVA with Bonferroni-adjusted pairwise comparison. Results Exposure to BioRoot and C-Root caused time-dependent increases in cell proliferation. Significantly more mineralized nodules were formed in cells exposed to AH Plus and BioRoot compared with the negative control. Alkaline phosphatase (ALP) activity was significantly lower in AH Plus cells compared with negative control, BioRoot, and C-Root cells. ALP, osteocalcin (OCN), and runt-related transcription factor2 (RUNX2) mRNA expression levels were all significantly higher in C-Root compared with AH Plus cells at day 7. IL-6 and IL-8 levels differed significantly among the experimental groups, with the highest IL-8 levels in BioRoot cells at days 7 and 14. Conclusion The experimental root canal-filling material C-Root has similar in vitro cytocompatibility to BioRoot and better osteogenic potential than AH Plus.
The incidence of advanced hepatocellular carcinoma (HCC) is increasing worldwide, and its prognosis is extremely poor. For some patients for whom surgical treatments are not appropriate, one can only rely on chemotherapy. In the conventional chemotherapy, side effects usually occurred in most cases due to high toxicity levels. Moreover, the development of drug resistance toward chemotherapeutic agents often prevents the successful long-term use of chemotherapy for HCC. Gene therapy represents the exciting biotechnological advance that may revolutionize the conventional fashion of cancer treatment. Overexpression of phosphatase and tensin homologue (PTEN) in cancer cells carrying deletion/mutant type of it can induce the apoptosis of cancer cells and inhibit cell proliferation. In this work, in order to make full use of the high transfectivity of adenovirus, we managed to conjugate the polysaccharide mannan (polymannose) to the surface of the adenovirus chemically under appropriate oxidizing conditions to prepare the mannan-modified adenovirus (Man-Ad5-PTEN). The cytotoxicity and anticancer activity of Man-Ad5-PTEN were assessed in vitro. Reporter gene expression of LacZ transferred by Man-Ad5-LacZ was verified on mannose receptor-deficient NIH/3T3 cells versus mannose receptor-efficient macrophages. Hepatocellular carcinoma cell lines transduced by mannan-modified adenovirus were assayed for cell cycle, apoptosis, invasion, and migration. Further, we detected the antitumor effect on intraperitoneal H22 tumor-bearing mice treated by Man-Ad5-PTEN alone or combined with chemotherapeutic agent of doxorubicin. The results demonstrated that cell growth suppression was not observed in Chang normal hepatocyte cells and the cell killing by Man-Ad5-PTEN is tumor selective. Further, the results showed that the strategy of mannan conjugation could enhance adenovirus-mediated PTEN gene therapy effects on murine hepatocellular carcinoma cells in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.