Diabetes mellitus is a chronic disease characterized by hyperglycemia. It may cause many complications. According to the growing morbidity in recent years, in 2040, the world’s diabetic patients will reach 642 million, which means that one of the ten adults in the future is suffering from diabetes. There is no doubt that this alarming figure needs great attention. With the rapid development of machine learning, machine learning has been applied to many aspects of medical health. In this study, we used decision tree, random forest and neural network to predict diabetes mellitus. The dataset is the hospital physical examination data in Luzhou, China. It contains 14 attributes. In this study, five-fold cross validation was used to examine the models. In order to verity the universal applicability of the methods, we chose some methods that have the better performance to conduct independent test experiments. We randomly selected 68994 healthy people and diabetic patients’ data, respectively as training set. Due to the data unbalance, we randomly extracted 5 times data. And the result is the average of these five experiments. In this study, we used principal component analysis (PCA) and minimum redundancy maximum relevance (mRMR) to reduce the dimensionality. The results showed that prediction with random forest could reach the highest accuracy (ACC = 0.8084) when all the attributes were used.
Motivation Transcription termination is an important regulatory step of gene expression. If there is no terminator in gene, transcription could not stop, which will result in abnormal gene expression. Detecting such terminators can determine the operon structure in bacterial organisms and improve genome annotation. Thus, accurate identification of transcriptional terminators is essential and extremely important in the research of transcription regulations. Results In this study, we developed a new predictor called ‘iTerm-PseKNC’ based on support vector machine to identify transcription terminators. The binomial distribution approach was used to pick out the optimal feature subset derived from pseudo k-tuple nucleotide composition (PseKNC). The 5-fold cross-validation test results showed that our proposed method achieved an accuracy of 95%. To further evaluate the generalization ability of ‘iTerm-PseKNC’, the model was examined on independent datasets which are experimentally confirmed Rho-independent terminators in Escherichia coli and Bacillus subtilis genomes. As a result, all the terminators in E. coli and 87.5% of the terminators in B. subtilis were correctly identified, suggesting that the proposed model could become a powerful tool for bacterial terminator recognition. Availability and implementation For the convenience of most of wet-experimental researchers, the web-server for ‘iTerm-PseKNC’ was established at http://lin-group.cn/server/iTerm-PseKNC/, by which users can easily obtain their desired result without the need to go through the detailed mathematical equations involved.
Promoters are DNA regulatory elements located directly upstream or at the 5' end of the transcription initiation site (TSS), which are in charge of gene transcription initiation. With the completion of a large number of microorganism genomics, it is urgent to predict promoters accurately in bacteria by using computational method. In this work, a sequence-based predictor named "iPro70-PseZNC" was designed for identifying sigma70 promoters in prokaryote. In the predictor, the samples of DNA sequences are formulated by a novel pseudo nucleotide composition, called PseZNC, into which the multi-window Z-curve composition and six local DNA structural properties are incorporated. In the 5-fold cross-validation, the area under the curve of receiver operating characteristic of 0.909 was obtained on our benchmark dataset, indicating that the proposed predictor is promising and will provide important guide in this area. Further studies showed that the performance of PseZNC is better than it of multi-window Z-curve composition. For the sake of convenience for researchers, a user-friendly online service was established and can be freely accessible at http://lin.uestc.edu.cn/server/iPro70-PseZNC. The PseZNC approach can be also extended to other DNA-related problems.
Colorectal carcinoma is one of the most common malignancies worldwide and the most prevalent cause of cancer mortality in China. The Miles operation and permanent colostomy are effective treatment. However, these affect the quality of life of patients as they alter normal defecation. Self-efficacy is used to define an individuals' assessments of their ability to perform a specific behavior successfully. It is regarded as an important belief that can predict health behaviors. The aim of this study was to explore the effect of a self-efficacy intervention on the quality of life of patients with a permanent colostomy. Forty-eight patients in treatment for permanent colostomy surgery were divided into the control and intervention groups. The control group received routine nursing; the intervention group was exposed to a 3-month self-efficacy intervention, as well as routine nursing. The two groups completed the Chinese version of a self-efficacy questionnaire at 10 days, 1 month, and 3 months after surgery. Three months after surgery, the two groups also completed a quality-of-life questionnaire. There were significant differences in the quality of life between the two groups. The self-efficacy intervention nursing method improved self-efficacy and the quality of life of patients with intestinal stoma and is worthy of clinical utilization and application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.