Single- and double-bundle reconstruction of the MPFL can both effectively restore patella stability and improve knee function. However, outcomes in the follow-up period showed that the double-bundle surgery procedure was much better than in single-bundle surgery.
Correct understanding of the land-surface processes and cloud-precipitation processes in the Tibetan Plateau (TP) is an important prerequisite for the study and forecast of the downstream activities of weather systems and one of the key points for understanding the global atmospheric movement. In order to show the achievements that have been made, this paper reviews the progress on the observations for the atmospheric boundary layer, land-surface heat fluxes, cloud-precipitation distributions and vertical structures by using ground- and space-based multiplatform, multisensor instruments and the effect of the cloud system in the TP on the downstream weather. The results show that the form drag related to the topography, land–atmosphere momentum and scalar fluxes is an important part of the parameterization process. The sensible heat flux decreased especially in the central and northern TP caused by the decrease in wind speeds and the differences in the ground-air temperatures. Observations show that the cloud and precipitation over the TP have a strong diurnal variation. Studies also show the compressed-air column in the troposphere by the higher-altitude terrain of the TP makes particles inside clouds vary at a shorter distance in the vertical direction than those in the non-plateau area so that precipitation intensity over the TP is usually small with short duration, and the vertical structure of the convective precipitation over the TP is obviously different from that in other regions. In addition, the influence of the TP on severe weather downstream is preliminarily understood from the mechanism. It is necessary to use model simulations and observation techniques to reveal the difference between cloud precipitation in the TP and non-plateau areas in order to understand the cloud microphysical parameters over the TP and the processes of the land boundary layer affecting cloud, precipitation and weather in the downstream regions.
Tibetan Plateau (TP) snow cover undergoes significant temporal and spatial variations during the winter and spring months. This study investigates the relationship between the spatiotemporal distribution of winter–spring snow cover (SC) over the TP and summer precipitation in eastern China (EC) using the singular value decomposition (SVD) method. Four simulation experiments are designed to validate the results of SVD analysis. Both observations and simulations show that heavier snow cover in the southern TP leads to more rainfall in the Yangtze River basin and northeastern China, and less precipitation in southern China, whereas heavier snow cover in the northern TP results in enhanced rainfall in southeastern and northern China and weakened precipitation in the Yangtze River basin. The linkage is attributed to anomalous westerly winds in the upper troposphere at around 200 hPa and to changes of the southern branch of westerlies at 500 hPa on the south side of the TP, which are caused by lasting diabatic heat anomalies over the TP. The shifts in position of the westerly jet at the exit region and negative anomalies of geopotential height at 500 hPa further result in anomalous anticyclone over the East China Sea and the corresponding 850-hPa water vapor convergence and influence the anomalous summer precipitation belt in EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.