Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Tibetan Plateau (TP) snow cover undergoes significant temporal and spatial variations during the winter and spring months. This study investigates the relationship between the spatiotemporal distribution of winter–spring snow cover (SC) over the TP and summer precipitation in eastern China (EC) using the singular value decomposition (SVD) method. Four simulation experiments are designed to validate the results of SVD analysis. Both observations and simulations show that heavier snow cover in the southern TP leads to more rainfall in the Yangtze River basin and northeastern China, and less precipitation in southern China, whereas heavier snow cover in the northern TP results in enhanced rainfall in southeastern and northern China and weakened precipitation in the Yangtze River basin. The linkage is attributed to anomalous westerly winds in the upper troposphere at around 200 hPa and to changes of the southern branch of westerlies at 500 hPa on the south side of the TP, which are caused by lasting diabatic heat anomalies over the TP. The shifts in position of the westerly jet at the exit region and negative anomalies of geopotential height at 500 hPa further result in anomalous anticyclone over the East China Sea and the corresponding 850-hPa water vapor convergence and influence the anomalous summer precipitation belt in EC.
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes. Accumulating evidence suggests that dysregulation of m6A modification significantly correlates with tumorigenesis and progression. In this study, we observed an increased expression and positive correlations of all 25 m6A regulators in esophageal cancer (ESCA) data obtained from the TCGA database. Through expression profiling of these regulators, a prognostic score model containing HNRNPA2B1, ALKBH5, and HNRNPG was established, and the high-risk subgroup exhibited strong positive correlations with ESCA progression and outcome. The risk score obtained from this model may represent an independent predictor of ESCA prognosis. Notably, the gene most frequently associated with increased risk was HNRNPA2B1; in ESCA, the increased expression of this gene alone predicted poor prognosis by affecting tumor-promoting signaling pathways through miR-17-92 cluster. An experimental study demonstrated that elevated HNRNPA2B1 expression was positively associated with distant metastasis and lymph node stage, and predicted the poor outcomes of ESCA patients. Knockdown of HNRNPA2B1 significantly decreased the expression of miR-17, miR-18a, miR-20a, miR-93, and miR-106b and inhibited the proliferation of ESCA cells. Therefore, our study indicated that the dynamic changes in 25 m6A regulators were associated with the clinical features and prognosis of patients with ESCA. Importantly, HNRNPA2B1 alone may affect the prognosis of patients with ESCA by regulating the miR-17-92 cluster.
Background Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S. chaenomeloides and S. arbutifolia, which have an XY system on chromosome 7 and 15, respectively. Results Based on the assemblies of their sex determination regions, we found that the sex determination mechanism of willows may have underlying similarities with poplars, both involving intact and/or partial homologs of a type A cytokinin response regulator (RR) gene. Comparative analyses suggested that at least two sex turnover events have occurred in Salix, one preserving the ancestral pattern of male heterogamety, and the other changing heterogametic sex from XY to ZW, which could be partly explained by the “deleterious mutation load” and “sexually antagonistic selection” theoretical models. We hypothesize that these repeated turnovers keep sex chromosomes of willow species in a perpetually young state, leading to limited degeneration. Conclusions Our findings further improve the evolutionary trajectory of sex chromosomes in Salicaceae species, explore the evolutionary forces driving the repeated turnovers of their sex chromosomes, and provide a valuable reference for the study of sex chromosomes in other species.
Conventional biomaterial-mediated osteosarcoma therapy mainly focuses on its antitumor effect yet often fails to overcome the problem of post-treatment bone tissue defect repair. Simultaneously, minimally invasive drug delivery methods are becoming spotlights for normal tissue preservation. Herein, an injectable curcumin-microsphere/IR820 coloaded hybrid methylcellulose hydrogel (Cur-MP/IR820 gel) platform was designed for osteosarcoma therapy and bone regeneration. In vitro, the K7M2wt osteosarcoma cells were eradicated by hyperthermia and curcumin. Later, the sustained release of curcumin promoted alkaline phosphatase expression and calcium deposition of bone mesenchymal stem cells. In vivo, this hybrid hydrogel could reach tumor site via injection and turned into hydrogel due to heat sensitivity. Under the irradiation of an 808 nm laser, localized hyperthermia (∼51 °C) generated in 5 min to ablate the tumor. Meanwhile, the thermal-accelerated curcumin release and thermal-increased cell membrane permeability led to tumor cell apoptosis. Tumors in photothermal-co-chemotherapy group were successfully restrained from day 2 after treatment. After that, bone reconstruction was promoted because of sustained released curcumin. The chemo-co-thermal efficacy and osteogenic capacity of Cur-MP/IR820 hydrogel suggest a promising approach to the treatment of osteosarcoma and provide provoking inspiration for treating bone tumors and repairing bone tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.