Nanoscale Fe(0) (nFe(0)) can detoxify Cr(VI)-bearing wastewater and groundwater, but rapid passivation is a negative factor for large-scale remediation applications. In this study, a magnetic FeS@Fe(0) hybrid material was fabricated by immobilization of iron sulfide (FeS) onto Fe(0) particles to improve the Cr(VI) removal capacity. The solid characterization confirmed that Fe(0) particles were encapsulated by amorphous iron monosulfide. The Cr(VI) uptake by FeS@Fe(0) hybrid particles was found to follow pseudo-second-order rate kinetics, and the Langmuir isotherm was most appropriate to describe Cr(VI) sorption. Meanwhile, the FeS@Fe(0) hybrid particles showed a much higher efficiency towards Cr(VI) sequestration compared to individual nFe(0). Moreover, the results of batch experiments with various adsorbent doses indicated that the reactivity of FeS@Fe(0) varies with different FeS-to-Fe(0) molar ratios. The reaction rate constants for Cr(VI) removal first increased with an increasing FeS-to-Fe(0) ratio from 0/1 to 1/9, and then decreased for the FeS-to-Fe(0) ratio increased further 1/5 or 1/3. For environmental parameters, there was a negative effect of increasing the solution pH and dissolved oxygen on Cr(VI) removal. Furthermore, a mechanistic analysis revealed that Cr(VI) reduction occurred predominantly at the solid-liquid interface, and that Fe(II) regenerated from FeS@Fe(0) corrosion may account for 52% of the Cr(VI) reduction, while electrons from Fe(0) and FeS account for the rest. After treatment, Cr(VI) was completely transformed and immobilized as solid Fe-Cr hydroxide precipitates, thus avoiding secondary contamination. The FeS@Fe(0) hybrid material has a better potential for treating Cr(VI)-bearing wastewater than nano Fe(0).
A stable epoxy‐acrylate composite latex was successfully prepared through emulsion polymerization of modified epoxy acrylic (EPAC) oligomer with acrylate monomer. The EPAC oligomer was obtained using active acrylic acid (AA) to react with epoxy resin. And by regulating the reaction degree of the active hydrogen of AA and epoxide group, there is the acquisition of terminal double bond that gives EPAC reactivity, together with the partial retention of the epoxide group that enables self‐crosslinking during film formation. The structural conformation of the oligomer was ascertained by Fourier transform infrared (FTIR) spectroscopy. The factors influencing the stability of the epoxy‐acrylate composite latex were investigated. The epoxy‐acrylate composite latex was the most stable when methyl acrylic acid was 1.5 wt% and modified EPAC oligomer was 15 wt% of the total monomer weight. The morphology and property of the composite latex films were characterized by scanning electron microscopy, transmission electron microscopy (TEM), and temperature‐modulated differential scanning calorimetry (TOPEM‐DSC). The results confirm that there is successful emulsion copolymerization between modified EPAC oligomer and acrylate monomer. TEM show that the particles of epoxy‐acrylate composite have a core‐shell structure, and there is no free epoxy resin. The FTIR and TOPEM‐DSC results reveal that the copolymer emulsion possesses self‐crosslinking ability. During film formation, self‐crosslinking reaction occurs between epoxide groups with carboxyl groups, giving exothermal phenomena. The thermal stability as well as the corrosion resistance of the films was analyzed. The results show outstanding thermal stability as well as corrosion resistance attributable to the crosslinking reticulation structure. It is envisaged that the epoxy‐acrylate composite latex has great potential in the development of high‐performance aqueous coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.